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FromMm THE PRINcCIPAL’S DESK

Aankalan, the Annual Mathematics Journal of Hansraj College is in its second year. It gives
me great joy to laud the young minds who have worked assiduously to bring it to fruition.

The Mathematics Department of Hansraj College has always had a legacy of greatness; be
it in the sphere of academic performance or innovation and research. Students have always
been encouraged to think out of the box and apply their learnings in the real world. They
have always been given the opportunities to inculcate critical and logical thinking. To this
count, I congratulate and commend the efforts of the Editorial Board to carry on the legacy
and seeking to promote critical thinking and research.

I also thank the faculty advisors Dr. Preeti Dharmarha, Dr. Harjeet Arora, Ms. Amita Ag-
garwal, Dr. Mukund Madhav Mishra and Dr. Rakesh Batra for their constant efforts to take
the Department to greater heights and mentoring young minds.

I hope that Aankalan will continue to serve as a learning platform for students and uphold
the sanctity and glory of the Department!

Dr. Rama

PRINCIPAL

Hansraj COLLEGE,
UNIVERSITY OF DELHI
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FroMm THE HEAD OF FACULTY ADVISORS

The response to the first issue of Aankalan, the Academic Publication of the Department of
Mathematics, Hansraj College in 2020 from students and faculty has been overwhelming. I
have relished the joy of contributing in guiding our extremely dedicated and focused Edito-
rial Team in shaping this second issue of Aankalan. I thank our ever dynamic and inspiring
Principal, Prof. Rama, for her consistent backing and motivation.

I congratulate all the team members: Editor-in-Chief: Utcarsh Mathur along with the Asso-
ciate Editors: Adityendra Tiwari, Apurva Chauhan, Samarth Rajput and Shivam Belvanshi,
Assistant Editors: Daksh Dheer and Simran Singh, who despite the trying times of pan-
demic, endeavoured with complete dedication and determination.

We are in the midst of a marked transformation in teaching and learning, which is evident
from the recently implemented New Education Policy in the country. There is an empha-
sis on improving and innovating the curriculum and instructional approaches, which need
inquiry-based learning, which in turn leads to active engagement of students with coherent
and meaningful mathematical tasks where students process mathematical ideas collabora-
tively.

The research is clearly pointing to inquiry-based mathematics education as a stance and set
of teaching strategies to actively engage in mathematics teaching and learning. The desired
evolution in education suggests shedding the boundaries of limited classroom learning in
order to prepare the learner for global leadership. For such changes to be possible and sus-
tainable, a broader cultural change is needed and to meet the new challenges in any field,
updating with the new trends and new knowledge is the key, which is possible only with a
scientific aptitude of researching and exploring.
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From THE HEAD OF FACULTY ADVISORS iv

Excellence in academics has always been a hallmark of the Department of Mathematics at
Hansraj College. Mathematicians par excellence like Shanti Narayan ji, Prof. M.C. Puri, Prof.
S. C. Arora and Dr. S. R. Arora; in close association with gurus like Dr. Harbans Lal, Dr. K.
L. Bhatla, Dr. N.M. Kapoor, Dr. Satpal, and Sh. 7. P. Pruthi as guiding lights brought the
Department as the most sought after for undergraduate studies, the stepping stone to one’s
career. Our Department has been instrumental in nurturing and creating global leaders by
providing the best of classroom teaching along with co-curricular and practical experiences.

We lost two pillars of our Department, Dr. Satpal and Sh. J. P. Pruthi since the issuance
of our previous issue of Aankalan. Our entire team pays tributes to the stalwarts, whose
able guidance had a significant role in nurturing the Department and our College for many
decades of their association with us.

The inputs and thorough feedback by the Advisory Editorial Board members Dr. Harjeet
Arora, Mrs. Amita Aggarwal, Dr. Rakesh Batra and Dr. Mukund Madhav Mishra, aided
immensely in improving the content. A big thanks to them!

The contents of this edition have also been selected after a careful review by experienced
faculty. The issue comprises of a rainbow of articles ranging from abstract concepts from
analysis such as totally bounded sets, ordering in Complex Numbers and Riemann Hypoth-
esis to beautiful applications of linear algebra and probability along with the Three Utility
Problem from graph theory and mathematics in plants from bio-mathematics. Apart from
these, it also includes two problems namely, ‘Mapping’ and “The Windmill Process’ along
with a short piece on lesser-known Mathematical facts.

I am sure that this publication will greatly motivate the students in developing inquisitive-
ness to explore new domains, go further deep into the touched upon ideas and build their
interest in research; inculcating confidence in them. It is also our endeavour in honing the
presentation skills of the readers and prepare them for creating quality academic content.
I am confident that this launching pad will open new arenas for the avid learners and em-
bolden them to dig out the pearls from the vast ocean of knowledge.

Dr. Preeti Dharmarha
ASSOCIATE PROFESSOR,
DEPARTMENT OF MATHEMATICS
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From THE ED1TORS’ PEN

Aankalan, the Annual Mathematics Journal of Hansraj College was started in 2019 by a
group of Math-enthusiasts, with a view to encourage external learning and inculcate re-
search and expository skills at an undergraduate level. It aims at appreciating the signifi-
cant presence of the subject in real life. We seek to go beyond the books and explore the
vastness of the subject through research, exploration and innovation, something that the
Department has always encouraged. As Walt Whitman eloquently puts in his 1867 poem
‘When I Heard the Learn’d Astronomer’, real knowledge is what comes from exploration and
experiences and this is what the Department of Mathematics at Hansraj stands by.

It is believed by many that all mathematics is concerned with is cumbersome equations
and unnecessary symbols carelessly dispersed over pieces of paper. But that’s far from the
truth. The subject is, in our humble opinion, derived from the universal truths of the world.
Every iteration has some logic to it. Perhaps it is in this logic and truth, in a perplexed and
asymmetric world, that mathematicians find their peace. Though the wide and all-pervasive
nature of this subject has prevented the formulation of a common definition, one can agree
that mathematics is concerned with patterns, certain regularities (or irregularities) that con-
stitute nature. Be it the cycle of time, the change of weather, movement of planets or even
our own breathing, patterns can be found everywhere in life. It is these patterns that form
the basis of mathematics.

The Journal encourages students to explore such patterns and try to make them relatable
with topics of higher mathematics. It serves as a learning platform, where students learn
from each other, through the aggregation of each others’ thoughts.

The initial part of the Journal brings to you the palate of the average math aficionado, with
topics from Real and Complex Analysis, Abstract Algebra and Linear Algebra. These ar-
ticles discuss the certain nuances and subtleties of these subjects, from the perspective of
undergraduate students. We also include some clever proofs of well-known theorems.

We then move on to discuss the applications of the subject in real life. It is almost impossible
to imagine a world without mathematics. It is involved in almost all aspects of our lives, be
it using the internet or managing one’s finances or processing data or even preparing one’s
food! Often, mathematics is applicable in places that we don’t really see. The latter portion
of this Journal deals with such observations.
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From THE EDITORS’ PEN viii

Finally, we leave the reader with some food for thought; certain problems that would cap-
ture your fancy and some lesser-known facts that can be the subject of further research.
We hope that the articles increase the knowledge base of students and encourage them to
delve further into the particularities of the discipline. We end with a quote by someone who
always valued knowledge and power of exploration;

“Reach high, for stars lie hidden in you. Dream deep, for every dream precedes the
goal”

-Rabindranath Tagore

With that, we present to you, Aankalan 2021.
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INTERVIEW WITH DR. S.C. ARORA

Prof. S.C. Arora is a teacher par excellence and an illustrious and erudite academician. He
completed his post-graduation from Hansraj College, University of Delhi in 1967 standing
first in the University. Subsequently, he was appointed as a lecturer in Hansraj College,
where he taught for a period of twenty years. He then joined the Department of Mathemat-
ics, University of Delhi, where he also served as Head of the Department.

After superannuation, he remained associated with various academic institutions includ-
ing PDM college/University, Haryana and SGTB Institute of Management and Technology,
Delhi. He continues to be associated with academic bodies like UGC, AICTE, NCERT, CBSE
etc. He is also associated with many Public Service Commissions like Union Public Ser-
vice Commission, Himachal Pradesh Service Commission and Jammu and Kashmir Service
Commission among others. Throughout his teaching career, he was involved in research
and published more than 100 papers in various reputed journals and continues to deliver
lectures at national and international conferences. Prof. Arora has also supervised 75 M.Phil
and Ph.D students.

The representatives of the Editorial Board, Daksh Dheer and Simran Singh had a candid
telephonic conversation with this calm and humble personality. Excerpts:

DaxksH: Sir, first of all, we would like you to tell us about your journey at Hansraj. How
was it like? What were the major highlights?

Dr Arora: I was a student here at Hansraj College in 1961, when it used to be a boys’
college, and was not co-educational. Our teachers were great. In fact, it is due to their
teachings, that I became Dr. S.C. Arora. The one thing that they taught us, that I would
point out, was to take our classes regularly. We were always taught to be punctual and
“make no excuses”. Hence, we adjusted our time table, programs and fests in such a way
that we didn’t miss any classes. My teaching career at Hansraj began on 28" July, 1967.
Throughout my career, I do not remember missing even a single lecture, be it during my
stint at Hansraj from 1967-1987, or during my days at the University. My students can vouch
for that! It isn’t something worthy of praise, it is our duty to do so. If I speak in very safe
terms, we are being paid to do just that!

SIMRAN: Sir, you said you owe your teachings to your mentors, and so, we would like to
know what was it like having Professor Shanti Narayan as your mentor.
Dr ArRoORA: He was a great man. He did so much for the students. It was because of him
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that people like me became faculty at the Department of Mathematics, University of Delhi.
He moulded our careers. To be very frank, I was quite poor. He gave me a place here; I was
living at college hostel for a year during my masters. He used to help the students so much.
I still remember that during my post-graduation, I used to sit in the college library (which
used to close by 12 am in those days), and Prof. Narayan used to come at 11:30 pm to see
which students were studying. I must say, whatever you all must’ve have heard about him,
that is still minuscule compared to what a great man he truly was. I distinctly remember
once, I had issued a book from the library, Commutative Algebra by Zariski, but somehow
it went out of my possession without my knowledge. I had no money to pay for the book. I
went to him and explained the situation, and he wrote to the college library and waived off
the fine. The years at Hansraj College were the golden years of my life. The past can never
come back and I miss those days dearly, even today.

SIMRAN: Yes, sir, hearing your anecdotes, we cannot help getting bittersweet about our own
unique online college life, which brings me to ask you- what changes according to you are
required in the current teaching patterns?

Dr ARroRrA: A lot of things have changed since I retired in 2010. People have become faster
now, life has become quicker. People are used to online learning, something which we never
had. I do not know how useful the online mode of education is, but I do believe that the
students, particularly young ones, are overburdened. Perhaps something should be done
in that regard so that the students aren’t always stuck to their laptops and phone screens.
Thinking and introspection on one’s own is also required, which is what we used to do.
Some balance has to be struck between the online and offline mode. I feel care has to be
taken to ensure that students learn to think deeply on their own. There is no replacement
of face-to-face teaching. A teacher’s personality is absorbed by their students, and not just
in terms of teaching, but the way they tackle problems and talk, which is missing now. I
remember talking to my students who tell me that they try and teach the way I taught them;
they try to imitate my methods and teachings towards their students. So, students inherit
the personality of their teachers and pass it on further to their own students.

SIMRAN: Since we are on this topic, would you tell us how did you end up in the field of
mathematics? Did you choose your profession as a professor for a specific reason?

DR ARORA: My parents never planned to send me to Hansraj College. Out of Physics, Chem-
istry and Mathematics, I was more inclined towards maths, even though physics was also
very interesting. I simply chose mathematics because I enjoyed it. At the time, I never
thought of pursuing engineering or medicine, though there weren’t any competitions to
qualify for going into these fields; everyone used to get admission here or there unlike now.
I could have just as well gone into the field of physics or chemistry. I came here just because
it happened, and I don’t want to falsely boast that it was all planned and I always wanted
to study mathematics- no, I simply chose it because I was better at it.

SIMRAN: Sir, now that you have told us about choosing mathematics, could you tell us about
your areas of interest? Which field do you find most interesting?
Dr ARrorA: My specialisation is in analysis, so I was always interested in that. However,
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I used to like algebra too. Now, before I move further, I want to tell you all to not simply
go by my words because now the scenario has changed. The focus has shifted to applied
mathematics, i.e. people now talk more about its applications. To give you an example,
some 15-20 days ago, I delivered an online lecture on the Fundamental Theorem of Alge-
bra. I have delivered the same lecture many times, but this instance, for the first time, they
insisted that I talk not entirely about the theorem, but also on its applications. Nowadays,
people mostly talk about how the mathematics they study is applied to real-world problems.

DaxksH: Right, sir, there is now a focus on applied mathematics now, but even so, do you
think that scope for undergraduate research should be provided? How can students be en-
couraged in this direction?

DR AroRA: I think they may be shown the places where the knowledge they have learnt
can be applied. At the undergraduate level, there is high scope of practicality and applica-
tion of concepts, and this ought to be focused upon. Undergraduate study is mostly focused
on mathematical tools; tools of algebra, tools of analysis, in other words, the utility of the
subject. Of course, they may learn on their own terms, at their own pace, but the empha-
sis should be on applications and usage of mathematics. Moreover, focus on the real, pure
mathematics should come at postgraduate and higher levels, when the students have at-
tained enough maturity and understanding.

SIMRAN: On that note sir, how do you view student-teacher bond, and what word of advice
would you like to give to the students?

Dr AroRA: Love and respect; they go together. Teachers show love to their students and, in
turn, students show respect to their teachers. They are two inseparable aspects. The bond
is quite similar to how a father cares for his son or daughter. This sacred bond is important
and ought to be preserved. To all the students, I wish them all the luck and advise them to
develop this love-respect bond deeply with their teachers. I emphasise here once again the
necessity of attending classes regularly without fail, be it a teacher or a student. Learn to
think on your own and don’t let the shortcomings of online classes deter you. Remember
that these are the golden years of your life that won’t ever come back, so live them to the
fullest and work hard!
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EQUIVALENT DEFINITION OF
TOTALLY BOUNDED SETS

Ekansh Jauhari
Batch of 2020

ABSTRACT

The article aims to provide a more convenient equivalent definition of totally
bounded sets in a metric space by establishing that the subset F, C X (in the
usual definition of totally bounded sets in a metric space- also defined in the
Introduction section below) can be chosen from the set A itself, i.e. we can get
some set G. C A C X corresponding to any given € > 0.

Notations: (z,) denotes sequence. 2\ denotes that i is fixed index and n is the running
index. U C V includes both possibilities, U = V and U C V. B(x,7) denotes open ball
centered at x with radius .

INTRODUCTION

For a set in a metric space, the condition of total boundedness is much stronger than that of
boundedness because it gives many important implications, including of course, the bound-
edness of the set.

In a metric space ( X,d) , A

C X, A # ¢ is said to be totally bounded if V ¢ > 0,3
a finite non-empty set /. C X, F, =

{z1,29,...,2,} such that A C |J B(z,¢) or

z€F
n
A C | B(x;,€). Amongst many implications of total boundedness, one important impli-
i=1

cation or property is the following:

Lemma. A set is totally bounded if and only if every sequence belonging to the set is a Cauchy
sequence (the technique involved in its proof deserves another such dedicated article, and is thus

skipped here).
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Proor Step I
(See the Abstract section for the aim of this proof.)

Note that it is trivially true if the set A is finite, or if A = X. So we take the general case
where A could be a proper subset of X and it need not be finite.

Let us be given a metric space ( X, d)and A C X be totally bounded. Choose an arbitrary

e > 0. So,IF, = {x1,29,...,2,} C X such that A C U B(z;,€). Take some y € A.
=1
Then, for some j, 1 < j <n,y € B(z;,¢). Thend(z;,y) <e Letr = e+ d(z;,y).

Claim 1: B(zj,e) C B(y,r).

Proof. z € B(xj,€) = d(xj,2) <ed(y,z) < d(y,z;) + d(z;,2)
=d(y,z) — d(y,z;) < d(xj,2).Butwealsohaved(z;,z) < €

=d(y,z) — (y,xj) < eord(y,z) <d(y,xz;) + e=r
Therefore z € B(y,r) and therefore B(z;,¢) C B(y,r). O

So, what we get from here is that for arbitrary y € A,y € B(xj,€) forsomej, 1 <j<n
and that B(xj,¢) C B(y,e+d(zj,y)) = y € B(y,e+d(xj,y)) . Let us denote this
y € B(wi,e) byy; € B(wi,e).

We will get these y; V1 < i < n. Clearly,asy; € AV1 < i < n, we get a new set
= {y1,y2,.-.,yn} C A and (rewriting with the changed notation), we have A C
U B(yi, e + d(z;,y;) ) for the initially chosen ¢ > 0, where y; are chosen from A such

that y; € B(x;,¢€). If we define M = sup{d(x;,y;) : 1 <i < n}, then certainly M € R
and clearly, B(y;, e + d(x;,y;) ) C B(yi,e+ M)V1<i<n.

Thus, finally we get that for any given ¢ > 0, we can get a finite set G. C A, G, =

{y1,92,...,yn} such that A C |J B(y;,e + M) where M = sup{d(x;,y;) : 1 <1 <n},
i=1

and y; € B(x;,€). O

INFERENCES

For a given € > 0, we're able to form a finite totally bounding cover from within A, but of
radius € + M. So to get a cleaner form, for any given ¢ > 0, we will have to perform the
following 3 steps:

1. Choose an € > ( and get a conventional total bounding cover from F, = {x1,xs,...,2,} C

X.
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2. Find (one foreachifrom1ton)y; € A, y; € B( x;, €) and calculate M = sup{d( z;,y;) :
1 <i<n}

3. Finally, make the total bounding cover G. = {y1,¥2,...,yn} C A with radius e — M,
which finally gives us the radius (€ — M) + M =e.

Note 1: the value e— M is justified as a non-negative radius because d( z;,y;) < eV j,1 <
J < nwhereas M = sup{d(z;,y;) : 1 <i <n}.So by definition of supremum, M < e.

Though the proof is easy, the actual procedure to get GG, is unnecessarily lengthy. We can
get a better result if we can directly form a total bounding of the same radius € > 0 just after
step 1. Proving this shall require slightly different arguments and use of the above lemma
(see 1).

Proor Step II

In continuation with the previous arguments for (possibly infinite) totally bounded A C X,

and givene > 0, A C |J B(x;,¢). Consideray; € Asuchthatforsomej 1 <j<n,y €
i=1

B(xj,€).

Now, let T, denote |J B(yq,€) , and thus T} = B(y,€).

a=1
If (B(xzj,e) NA) C Tj, we are done. So assume otherwise. Then, ( B(zj,¢) NA) \
Ty # ¢,= Jys € (B(xj,e) NA) \ Ti. Now, make 5, = B(y1,€) U B(yq,€) . If
(B(zj,e) NA) C Ty, we are done, otherwise 3 y3 € (B(z;,e) NA) \ T; and we form 75
and perform similar check again.

Note 2: Evidently, yo ¢ B(y1,¢) and y3 ¢ B(y1,€) , B(y2,€) and thus, d(yq,y1) > €
and d<y37y2) > €, d(y37y1> > €.

Claim 2: 3 ¢ € Nsuch that ( B(z;,¢e) NA) CT..
Proof. Let us prove this by the method of contradiction and assume that V n € N, ( B(z;,€) N
A) \ T, # ¢, and therefore 3 y,11 € (B(zj,¢) NA) \ T,,.
Clearly then,Vn € N, y,41 ¢ | B(Ya,€).
a=1

= Un+1 ¢B(ya,€)Va,1§a§_n
:>d(yn+1>ya) >eVa,1<a<n

Since this happens V n € N, in light of Note 2, we get that d( y.,y,) > €V e,p € N where
e # p. Consider the sequence of these terms (y.) € AV e € N. This sequence (y.) € Ais
a Cauchy sequence if and only if V 6 > 0,3 ny € N, such that Ve, p > ng, d(y.,y,) <.
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But from above, we obtained, for a particular, (initially chosen for the proof) ¢ > 0 and
Vn €N, that d(y.,y,) > €Ve,p € Nwheree # p.

This, of course, is an absolute negation to the definition of Cauchyness which proves that
(ye) € AisNOT a Cauchy sequence. But then this entire derivation is a clear contradiction
to the result (lemma 1) seen above = the assumption that we took for this proof is wrong,
and hence we get that 3 some ¢ € N such that ( B(z;,¢) NA) C T.. O

This ¢ € Nand these {y1,ys, . . ., Y.} are for the particular ball B( z;, €) , so better we denote
them as ¢; € N and {yy), y ,yc])} As the choice of B(x;,€) was arbitrary, we can

get some ¢; and the corresponding set of points {yl ,yé ), o ,yci)} Vi, 1 <i<n.

Therefore, V1 <i < n,(B(x;,¢) NA) C T, for some ¢; € N, where T, U B(yal ,€) .

a;=1
n n

Now taking set union on both sides wrt i, |J( B(z;,¢) NA) C |J( U By, e)) =

i=1 =1 a;=1

Ac (U BGY, )

=1 a;=1

Notethatyé?éAVlgaigci, V1<i<n.

Therefore, we have found a set, say, H. C A, suchthat A C |J B(z,¢€), where
ZGHE

2 2 n n . . .
= {y1 , Us %...,yéﬁ,yﬁ ),yé ),...,y£2), ...... ,yi ),yé ), .. ,ygn)},whlchls certainly a

finite subset of A of cardinality H ¢;. As our € > () was arbitrary, this can be done for any
i=1
given € > 0.

So, given that A C X is a totally bounded set, we proved that V ¢ > 0, 3 a non-empty finite

set H, C A, obtained using its initial covering set F, C X, suchthat A C |J B(z,¢). O
ZGH&
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PLAUSIBLE ORDERINGS OF THE
COMPLEX PLANE

Aman Chaudhary
Year III

ABSTRACT

The utility of complex numbers has been fascinating since its evolution with
the help of roots of negative unity. Repeated attempts of ordering the com-
plex numbers in the Argand Plane has been a topic of subtle interest to several
mathematicians, unlike the real numbers where a trivial ordering is easily ob-
servable. The prime aim of the paper is to illustrate the idea of ordering and
find out if there actually exists any, for the complex numbers. The paper deals
with bringing out not only the conventional orderings like the lexicographic
ordering or Pseudo-ordering as discussed in various standard books, but also
an ordering arising through the idea of stereographic projection and its inter-
pretation.

Keywords: Ordering relation, Lexicographic ordering, Pseudo-ordering, Stereographic projec-
tion

INTRODUCTION

The idea of complex numbers is believed to have first struck the head of Hero of Alexandria
in 1% century CE, referring to the square roots of negative numbers, as per evidences[5].
The idea of complex numbers is however credited to the Italian Mathematician G. Cardano
(in 1545). Many renowned mathematicians have also put forth great interest in this idea and
it proliferated with the support of mathematical minds like R. Descartes (coined the word
‘imaginary’), De-Moivre, Euler and many more[2].

Since the beginning, when Argand suggested to represent the complex numbers in the plane,
proceeding with the evolution of Order Theory, the complex numbers’ inability to be an or-
dered field, has put to glory the name of many mathematicians who have contributed to this
field and has always fascinated a freshman in mathematics. It is a very noticeable question
in nearly every standard book meant for undergrads, that “The field of complex numbers is
not a completely ordered field’. The article is somewhat inspired from this question, talking

5
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in detail not only about, why it isn’t a completely ordered field, but also what it actually is,
and is there any ordering possible, if yes then which one?

Section 3, dealing with the central objective of the paper, uses a very salient feature of com-
plex numbers, i.e. stereographic projection. It initiates to provide a method that is more
valuable and handy in giving an analogous ordering in C, using the idea of equivalence
relation and equi-radii complex numbers. The article is kept basic without using intense
characteristics of Complex analysis or Discrete mathematics, to allow the freshmen to feel
handy at it.

The key work is partitioned into three sections. Section 1 deals with the preliminaries for the
article from the definition point of view along with the brief discussion of the order theory
and notations used, so that the paper can be followed on smoothly. Section 2 discusses
in detail about the inability of complex numbers to become an ordered field, along with
addressing some common ordering relations as discussed in various textbooks and their
possible reasons for failure. Section 3 represents the chief idea of the paper in connecting
the stereographic projection with a special type of pre-ordering relation in the complex
plane, and giving some geometrical interpretation. Section 4 concludes the paper.

PRELIMINARIES

The article is specifically centered at the ordering relation, so let’s start with some formal
definitions of the protagonist viz. ordered sets and ordering relations.

Partial ordering of a set, often simply referred to as ordering, is a binary relation which
is reflexive, antisymmetric and transitive. A set having such a relation is called a ‘poset’
(Partial Ordered Set), as was first coined by Garrett Birkhoff [4]. A poset is said to be totally
ordered (linear order or chain) if the relation holds for all pairs of elements. Since the article
is concerned with the idea of R and C only, we can simplify the definition of an ordering
relation as: Consider a set A, then a relation on A is said to be an ordering relation, denoted
by < (read as: ‘is less than’), if it satisfies the following two properties:

« If 2,y € A then either of the following holds

<y or T =1y or T >y

o If x,y,2z € Athen
r<yand y<z=x<z

In the same light, a set A is said to be an ordered set, if it holds an ordering relation. In the
article further, ordering refers only to the total ordering in the set. The ordering relation is
of extreme utility in structures like Fields. A field F' is said to be an ordered field if it is an
ordered set, i.e. the following four axioms (order axioms) are satisfied for any z,y, 2z € F.
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Axiom 1. Exactly one of x <y, x =1y or x > y holds true (‘Law of Trichotomy’).
Axiom 2. Ifx,y,z € F thenz <y and y < z = x < z (‘Law of Transitivity’).
Axiom 3. Ifrx <y thenV z € F,x+ 2 <y—+z.

Axiom 4. Ifxz > 0 andy > 0, then xy > 0.

Some common examples satisfying these properties are the set of real numbers R and ratio-
nals Q. Also, preorder (denoted as <) is a binary relation that is both reflexive and transitive,
but not necessarily antisymmetric. Each preorder on a set A induces an order relation by
defining an equivalence relation <, where @ < bif @ < b and b < a and the so obtained set
of equivalence class is often denoted by A/<.

Pertaining to ordering relation in the article, x < y denotes ‘z < y or x = y’. Also
x < yand y > x denotes the same thing. Often, x > 0 and z < 0 will imply as being
positive and negative respectively. Re(z) and I'm(z) denotes the real part and imaginary
part respectively, of a complex number. The article uses the standard notation of z for
the complex number, and |z| for the modulus of z (length of the line segment joining the
complex number z to the origin in the Argand plane), arg(z) denotes the principal argument
of the complex number (angle measured from the positive real axis to the line segment
joining the origin and z).

IS IT POSSIBLE TO ORDER THE COMPLEX PLANE?

Mathematicians have made repeated attempts to order the complex plane, but all their efforts
in vain, as the answer is (as expected) ‘NO’. Let’s look at why it’s not possible to order
the complex plane and some possible reasons later on. But before that, a trivial lemma is
mentioned below (proof as an exercise to readers), which will help us establish the fact that
we can’t order the complex plane.

Lemma. Ifx > 0= —2x <0
Now, let’s begin proving, using the concept of proof by contradiction.
Theorem. There doesn’t exist any ordering relation in the field of complex numbers.

Proof. Let (if possible), < be an ordering relation in the field C. Since this ordering relation
on R (a subset of C) satisfies —1 < 0, so the ordering on C must also hold this. But being
an ordering relation, < should be able to order any two elements of the complex plane, so
consider the ordering of ¢ and 0. Since ¢ # 0, so by Axiom 1, either of the following cases
must hold:

Case 1: Let 0 < 7, then on multiplying by 7 both sides
0<i?=0< -1 (By Axiom 4)
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which is a contradiction.

Case 2: Now if 0 > ¢, then by Lemma, 0 < —i.
On multiplying by ‘—i’ both sides, we have
0<(—1)?*=0< -1 (By Axiom 4)

which is a contradiction again.

Since it is a contradiction to a pre-established ordered pair, so our assumption was wrong.
Thus, it’s not possible to order 1 and ¢, i.e. the two elements are incomparable. Similarly, it
is clear that there are infinite number of such pairs that can’t be compared. Therefore, no

such complete ordering exists, and so “C is not an ordered field”.
N

Since, we now know that there is no complete ordering possible, one may further muzzle
his/her head and ask, “Are there any other types of ordering possible in C? If yes, what are
they ?”

Clearly, C doesn’t feature any complete ordering relation. But, the authors have tried mak-
ing C an ordered field either by some sort of extension or relaxation in the conditions. For
instance, Apostol[1] has mentioned in his Exercise 1.36 (Page no. 29) that is another order-
ing style, which does seem to be a proper ordering at once but it fails to satisfy the order
axioms. This Pseudo-Ordering’ is defined as:

We say z; < 2o, if either of the following holds—

1. |Zl| < ‘22’
2. ] = |22l and arg() < arg(=)

As the name suggests, it is not a complete ordering property but it does help to disentangle
the complex plane a bit. Upon verification, reader may observe that out of the four order

axioms, all the axioms hold (an exercise to reader), except Axiom 2. Consider z; = —1
and zo = 1, then clearly 2o < zi, as |z1] = |22 and arg(z1) = 7 > 0 = arg(zy). If
73 = —i,then 2y + 23 = —1 —i > 1 —i = 25+ 23 as |2, + 23] = |20 + 23] = V/2, and

arg(z1 + z3) = 61 (say) = =T, while arg(z + 23) = 02(say) = ==. But clearly, || > |65
contradicts Axiom 2.

Apart from the Pseudo-ordering by Apostol, W. Rudin[6] has mentioned Lexicographic or-
dering as follows:
We say 21 = a + 1b < 29 = ¢ + 1d, if either of the following holds-

l.a<c

2.a=cand b<d

Though this may satisfy the order axioms, but its futility in terms of applications can be
easily inferred from the fact that it is also called as ‘Dictionary ordering’ or ‘Alphabetical
ordering’, whereby we just order as per the appearance of alphabets in a dictionary.
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EXISTENCE OF A PRE-ORDERING IN C

The ordering that is going to be defined here uses a key feature of ‘Stereographic projection’,
so let’s first discuss what exactly it is, and how can we deploy it to come up with an ordering.

The Stereographic Projection:

Unlike real numbers, complex numbers are represented by points in a plane, since they
possess two co-ordinates instead of one. The idea of representing complex numbers in the
plane is believed to have been first noted by Gauss and Argand independently, but the major
contributions were made by B. Riemann, who made the use of a sphere to project its points
on a plane.

Consider a sphere of diameter 1 and centre (0,0, 3) in a 3—D plane, kept such that the
bottom touches the origin, and it lies in the upper half of the 2 — azis, i.e. the points lying
on the plane can be represented as -

S=<(2,y,2):2* +y* + z—1 2—1
- ;ZJ;Z- y 2 _4

Points on the sphere are projected from the North Pole (point N lying on the z — axis,
ie. (0,0,1)) onto the tangent plane (z—y plane) passing through the origin (South-Pole
S), like point a lying on the sphere is projected to point b on the plane (see Figure 2.1).
In this procedure, each point on the sphere, except the north-pole (as depicted by set S7),
corresponds to exactly one point on the plane. The North-Pole is referred to as ‘the only
point of infinity’ in the complex plane. If set P depicts the projection of the Set S” on the
x — y plane, then we have:

S =S5\{(0,0,1)}
C~P={(z,y,0): ( =x+1iy € C}

Figure 2.1: The Stereographic Projection
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This phenomenon is known as stereographic projection, and the sphere is called the Rie-
mann Sphere’. Clearly, P corresponds to the complex plane while P U {0, 0, 1} corresponds
to the Extended Complex Plane (An extended Field that includes all the possible infinities
of the Field).

Now, if we look carefully and ponder, we will realize that while projecting the points of the
sphere to the complex plane, a set of infinite number of concentric circles centered at the
origin (0, 0) are observed, whose radii vary from 0 to +0c0. In this way, every complex num-
ber lies at the circumference of one of the circles with the origin as its center (the complex
number 0 + ¢0 can be regarded as a circle of radius 0 with center at origin).

Figure 2.2: The concentric circles

So, something like Figure 2.2 is observed such that 0 = |zo| < |z1| < |22| < |z3] < -+ < o0,
where |z;] = r;and 0 < |r;] < 4+00 V i € RT, whereby the subscript of z and r denotes
the radius of the circle here.

lzl=r

Figure 2.3: The Equi-radii complex numbers
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In a nutshell, we have used the modulus of complex numbers to order them, such that the
complex numbers lying on the circumference of the circles |z;| = r; are less than those com-
plex numbers lying on the circumference of the circles |z;| = r;, for ¢ < j. But the problem
remains unresolved for the complex numbers lying on the circumference of the same circle
(see Figure 2.3).

For instance, all the roots of unity have the same modulus, but they are unalike, so all this
theory shatters at the very point, and concludes that the ordering is not complete. But, this
allows us to define a pre-ordering by using the equivalence classes of the complex numbers
induced by the equivalence modulus relation, i.e. all the complex numbers lying on the
circumference of the same circle are equi-radii complex numbers and they are equal in a
manner that their modulus values are equal and they belong to the same class, represented
as [z1] = [22], where [ ] denotes the equivalence class, which is analogous to saying z; = z,.

So, we have used the law of trichotomy of real numbers to relate with a feature of com-
plex number, which is also real, and this feature allows us to partition the complex plane in
classes with the help of the equivalence modulus relation.

Clearly, for any two complex numbers 2; and z,, exactly one of 21 < 25, 21 > 29, or
[21] = [22] holds as either of |z;| < |z2|, |21] > |z2|, or |2z1] = |z2| holds in a com-
plete ordering. So by the above property, we are able to partition complex numbers in
classes that can be ordered easily. For example, if we have to order the complex numbers
a=1i,b=—i, c=141i, and d=2—1i. Since |a| =1, |b| = 1, |c| = V2 and |d| = V/5,
so we have |a| = |b| < |¢| < |d| implying [a] = [b] < [¢] < [d], where a and b are equi-radii
complex numbers.

Geometrically speaking, an ordering relation gives an idea of the position of the elements
when placed over a line (linear ordering), for instance in R, x < y if x lies on the left of v,
or y lies towards the right of . Here also, this ordering via modulus relation corresponds
to the analogous feature as the point on the circumference, whose modulus is greater than
the other, is farther from the origin of the complex plane while the points which are equi-
distant from the origin of the circular plane, belong to the same equivalence class. The same
property can be attributed to the areas of the circle constituted by the circumference they
lie upon, i.e. if the area of the circle on whose boundary the point lies, is greater than that
of the other point, then it is farther, while if the points lie on the same circle then they have
the same area and therefore belong to the same equivalence class. Similarly, a property
concerning the volume of the sphere bounded by the plane x — y plane and a plane parallel
to the o — y plane, passing through the pre-image of the complex number on the sphere,
can be felt by the readers.

This idea of pre-ordering has comparatively more potential in the sense that it allows us to
have some properties that are prevalent in the real numbers like Linear ordering, Archimedean
property, well ordering principle and many more. So in one way or the other, we can say that
the set C of complex numbers is an ordered field under the equivalence classes of the mod-
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ulus relation, or we can say that complex numbers is a pre-ordered field. A very relative
question that may strike the reader’s mind be: “Why is the ordering in C pretty different
than that in R ?”. This can be attributed to the fact that the structure of Real and complex is
not exactly the same, for instance R is believed to have two infinities namely +o0o0 and —oo,
while C posses only North Pole as its infinity.

CoONCLUSIONS

The paper examines the idea of ordering the complex plane rigorously, in the light of Order
theory and Complex analysis. The paper gives a brief idea about ordering relations, posets,
partial ordering of complex plane and the complete ordering, citing instances from books
where authors have tried to extend the idea of ordering to make C an ordered field. Dis-
cussing the pseudo-ordering and lexicographic ordering, it begets a way to pre-order the
complex plane using the sense of stereographic projection and its interpretation.
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ABSTRACT

One of the biggest landmarks in Mathematical history was perhaps created with
the publication of Georg Friedrich Bernhard Riemann’s 1859 paper titled “On
the Number of Primes Less Than a Given Magnitude’, presented to the Berlin
Academy. The paper had many claims that brought about changes in the study
of Number Theory, Complex Analysis and most importantly theory of Prime
Numbers. The nature of primes continues to be an enigma in Mathematics that
is yet to be understood. It was the Riemann Hypothesis that gave us some direc-
tion. This paper discusses the Riemann-Zeta Function in brevity and attempts
to explain its consequences on the Prime Number Theorem.

Keywords: Analytic Number Theory, Riemann-Zeta Function, Prime Number Theorem

A BRIEF INTRODUCTION

The concept of prime numbers is one that is taught to a student at a very young age, perhaps
in the sixth grade itself. Ironically, however, a lot is yet to be known about the nature of
prime numbers. After a point, it is difficult to understand their occurrence and even more
difficult is to interpret their density.

This paper explains the correlation between the Riemann-Zeta function and the Distribution
of Primes as theorized by Bernhard Riemann in his 1859 paper. Although numerous math-
ematicians such as Eratosthenes, Hadamard, Poussin, Gauss, Hardy have extensively studied
primes, the most significant contributors to the Theory of Prime Numbers are Euclid (de-
scribed their infinite nature), Euler (gave the Euler Product, discussed in a later section) and
Riemann[1].

Through the zeroes of the Riemann-Zeta function (sometimes also referred to as the Euler-

Riemann-Zeta function), Riemann gave his own prime counting function. However, to un-
derstand the essence of this function, certain preliminaries must be established.

13
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The Riemann-Zeta function is a function of an argument s where s € C. It is defined as

follows: .

1 1 1 1
p— —_— 1 — —_— —_— ..
¢(s) — + 5 + 3 + T +

n=1

The argument s = x + iy such that Re(s) > 1 (i.e. Real part is greater than one).
Lemma. ((s) is absolutely convergent ¥ Re(s) > 1, but divergent otherwise.

Having clearly defined the nature of the function for Re(s) > 1, we can move on to under-
stand its nature outside the half-plane Re(s) > 1. Itis apparent that ((s) becomes divergent
for any Re(s) < 1.

However, to study the relation between the function and prime numbers, the function
should be defined in the whole of the complex plane. This may be possible if we define
the function a little differently for Re(s) < 1, while ensuring that its basic properties are
preserved. This is precisely what Riemann did in his paper. This process is called analytic
continuation, although Riemann does not mention this process explicitly, rather tries to find
a function which “remains valid for all s”[2]. The process of analytic continuation tries to
extend the definition of a function beyond its domain while preserving its basic properties
such that the extended function has a derivative everywhere.

Through analytic continuation, Riemann extended the definition of the function V Re(s) >
0 except for s = 1, where there is a singularity. He further extends the function in the entire
complex plane using the functional equation:

™

£(s) = 257 Lsin <78> (1 —s)C(1—9) (3.1)

where

defined as the gamma function.

RiemanN HYPOTHESIS

Having established the preliminaries, one can move on to explain the subject matter at hand;
Riemann’s Hypothesis. It can clearly be seen in 3.1 that £(s) becomes 0 when s = 2n. When
n is positive, the zeroes get cancelled by the poles of the gamma function. Thus,

((s)=0Vs=—2n

where n € Z™.
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These are called the trivial zeroes of the Zeta function. In his 1859 paper, Riemann hypoth-
esised that the non-trivial zeroes of the zeta function lie in the critical strip (region where
0 < Re(s) < 1) and have their real part as % Thus, s = % + zi, are the only non-trivial
zeroes of the zeta function. This is called the Riemann Hypothesis and is yet to be proved[3].

EuLER’s IDENTITY

In his thesis titled ‘Various Observations about Infinite Series’ (published in 1737), Euler gave
his product identity that gave a connection between prime numbers and the Riemann-Zeta
function. This identity, called Euler’s Product is one of the most important results in An-
alytic Number Theory and also served as the basis of Riemann’s 1859 paper. The identity

1s:
ZOO 1 H 1

1
P p*

where the product on the right hand side is taken over all the primes.

The above identity may be derived by successively multiplying ((s) by # and subtracting
the resultant from the preceding term. For example:

1 1

=14 —+—F--- 3.3
((s) to s + (3.3)

Multiplying by 2% on both sides:

1 1 1 1

O =gt Tt (34)

Subtracting 3.4 from 3.3 we get

1 1 1

1—-— =14+—+—=+4+- - 3.5
(1-5 ) =14 g+ (5)

In a similar manner, one may successively multiply the Zeta function by a reciprocal of some
power of a prime number and subtract the term obtained from the preceding term. Thus,

o)=Y =T+

n=1 P p®

By looking at the identity 3.2 one may also realise that the Riemann-Zeta function cannot
be zero for any Re(s) > 1. Thus, the only zeroes ((s) has are:

1. Its trivial zeroes i.e. every negative even integer.

2. Its non-trivial zeroes given by the critical line s = % + xi in the Argand plane (as
claimed by Riemann).
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RiemanN’s PRIME COUNTING FUNCTION

The Prime Counting function 7(z) is defined as the number of primes less than a given num-
ber x. For example, 7(3) = 1 as there is only one prime number less than 3. When graphed,
this function resembles the step-function as it increases by one unit for each prime. While
it is easy to compute 7(z) for smaller values of z, this cannot be done for arbitrarily large
numbers.

A number of other methods have been proposed by various mathematicians to compute the
density of prime numbers, the most accurate being the one given by Riemann. He defines
his Prime Counting function as:

1

J(I) = LZ(ZE) - ; Ll(l’p) — 10g2 + /x mdt (3.6)

where

Int

Li(z) = /2 "L

and p represents the non-trivial zeroes of the Riemann-Zeta function[1]. Riemann claimed
in his paper that the above function could calculate the number of primes less than a given
magnitude with the least error.

The accuracy of the Riemann-Prime Counting function may be appreciated with the follow-
ing examples. Here, the Prime Counting function and Riemann’s Counting Function have
been calculated and graphed (using CAS Wolfram Mathematica, due to their large nature)
to provide a comparison.

The following commands have been used in the figures below:
1. RiemannR[ ]: for calculating Riemann’s Prime Counting Function.
2. PrimePi[ ]: for computing the Prime Counting Function.

3. Plot[ ]: for plotting the functions mentioned above.



RIEMANN HYPOTHESIS: THE PRIME QUESTION 17

RiemannR[189.] RiemannR [18 868, ]

Primepq [180.] PrimePi |10 608, |

Plot|{Riemannk [x], PrimePi [x]}, {x, 1, 188}, Plot{{RiemannR[x], PrimePi[x]}, {x, 1, 18888},

FlotStyle =+ {{Red, Thick}, {Purple, Thick)}, Plotlegends = {"J{x)", "m(x)"}] PlotStyle = {{Red, Thick}, {Purple, Thick}}, PlotLegends - {"J(x)", "mix)"}
25,6616 1226.93

5 1229

—_ Hx) - Jix)

— mix) — mx)

= = - E)I 4m0 &l00 anod 10000

0 40 B an ion

(a) m(z) and J(z) for x = 100 (b) 7(x) and J(x) for z = 10,000

Figure 3.1
RiemannR[10 060 808 GO0 08¢, |
PrimePi (10 086 D06 BDEBEE. |
FPlot[{Riemannk[x], PrimePi[x]}, {x, 1, 10020062 E0EEE0 },
FlotStyle = {{Red, Thick}, {Purple, Thick}}, Flotlegends - {"Mx}", "mx)"H
3.AE066 « 18
346665536 839 Fiemannk [L83 00E GO0 DG0 £0F D00 800, |
i FrimePi[150 B30 FE6 GRG G60 08F 808, |
FlotlRiemannR[x]. Prime®ifx}, {x, 1, 100030066 600296000006 },
ot FlotStyle — {{Red, Thick}, {Furple, Thick}l, Pletlegends - {"Jix}", "m{z)"}
S 2.22081066255662 7915401 « 10%
20a10" — W)
L5a10" — ni{x} — 20
‘ (b) 7(z) and J(x) for z = 10

LOo=10*

220 asin G ln® Bl 1=10"

(a) 7(x) and J(z) for z = 1013

Figure 3.2

Remark. In the figures, the following observations can be made:
1. m(x) = J(x) + k where & is the error. Thus, J(z) ~ 7(z)
2. The error term increases gradually as = increases.

3. After a point, even the CAS fails to give an accurate value for 7(z), forcing one to
rely on J(z).

Thus, when z is arbitrarily large, no conclusions can be drawn from the Prime Counting
function. Riemann’s function (accounted for error) is the only way to get a rough picture.
Even though this function has given credible results, it can only be considered true when
it is proved that the non-trivial zeroes of the Riemann-Zeta function (denoted by p in his
Prime Counting function) have 3 as their real part.

CONCLUSIONS

The above observations highlight the relevance of the Riemann-Zeta function in modern
Mathematics. Though his Prime Counting function has approximated prime number density
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with most accurately vis-a-vis other functions, its validity solely depends on the Hypothesis.
Riemann himself remarked

“One would, of course, like to have a rigorous proof of this, but I have put aside
the search for such a proof after some fleeting vain attempts because it is not
necessary for the immediate objective of my investigation.”[5]

If solved, the Riemann Hypothesis would not only make us understand the true nature
of Prime Numbers, but would also vindicate countless theorems that assume it to be true.
Consequently, the Theory of Riemann-Zeta function has emerged as a fascinating branch
of study. The Riemann Hypothesis has been checked for the first 10'® values but has not
been proved as yet. It is enlisted as one of the 7 Millennium Problems in Mathematics by
the Clay Mathematics Institute[4].

In September 2018, British-Lebanese mathematician Sir Michael Atiyah claimed to have
solved the problem. His proof has been derived from the works of John von Neumann and
Friedrich Hirzebruch. However, it is yet to be verified.
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ABSTRACT

It has become more of a norm, that the level of sophistication achieved by a
civilization determines how progressive it is. This mundanity starts with some-
one’s ingenious observation of a very grassroot subject, which is followed by
the employment of our available knowledge and resources to generalise this
observation and apply this newly acquired wisdom in some other field. But,
there are ‘rare’ cases when an object of discovery is left undisturbed in its pris-
tine form. One of these rarities is the subject of focus in this paper; a pair of
dice. When numbered from 1 to 6, the probability of obtaining any particular
sum with these dice is % for a 2, % for a 3, and so on. On the other hand, if we
number one die with integers 1,2, 2, 3, 3,4 and another die with 1,3,4,5,6,8
then the probability of obtaining any particular sum with these dice remains
the same! This paper attempts to ensure its validity and prove that this is the
only possible pair with such property.

Keywords: Probability, Group Theory, Ring Theory, Integral Domains, Unique Factorisation
Domain

INTRODUCTION

The game of Ludo has deep-seated roots in the history of our country. Have you ever won-
dered why we have numbers only from 1 to 6 on the die only? And even after playing this
game for more than 5000 years, this game does not seem to have reached any level of so-
phistication. Ludo is a game of probabilities and the uncertainty lies on the part of the die.
Thinking about probability an American Mathematician, Martin Gardner presented before
us, the Sicherman Dice[1]. It consists of a pair of dice, one with the integers 1,2,2,3,3,4
and the other with 1,3,4,5, 6,8 as its labels. The astounding beauty of these dice lies in
their property of yielding the same probability to achieve a given sum as that with an ordi-
nary dice. To understand the proof better, we equip our readers with a few key concepts in
mathematics that are used in this paper.
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WHAT 15 A RING?

A ring R is a set together with two binary operations, addition and multiplication, which
satisfy the following axioms:

First, R is an abelian group under addition with zero as identity. Next, multiplication is
closed and associative. At last, we require addition and multiplication are compatible i.e.
Va,b,c €R, (a+b)c=ac+ be.

A ring (R, +,-) is said to be a ring with zero divisors if for any non-zero a € R, 3 a non-
zero element b € R: ab = 0 or ba = 0, where 0 is the additive identity in R. Here, a and b
are called divisors of zero. If e is an element of a ring R: ae = a = ea V a € R, then the ring
is called Ring with unity. A commutative ring with unity and no zero-divisors is called an
Integral Domain[2, 3].

WHAT 15 A UNIQUE FACTORIZATION DOMAIN?

Essentially, a UF.D is an Integral Domain with an additional property. This additional prop-
erty may seem to be stuff reserved especially for mathematicians, but in essence, it is easy
to understand:

Any element that belongs to a U.F.D can be expressed uniquely as a product of a finite num-
ber of irreducible elements of the U.F.D. Now, with the help of the terms mentioned above,
we begin with the proof.

Proof. The fact that the set of integers Z[x] has the unique factorization property provides us
with the fuel to begin with our proof. We start with the basics and consider the possibilities
of getting 6 as the sum with an ordinary pair of dice and they are: (1,5), (2,4), (3,3), (4,2),
(5.1).

Next we multiply two polynomials formed by the ordinary dice labels as exponents:

(x+2? +2° + 2 + 2° + 2% (z + 2® + 2% + 2* + 2° + 29).

It is important to notice that the term x% in this product can be obtained in precisely the
following ways:
ol x 2% 2 x at, 2 x 23 2t x 2?2’ x ol

There is a correspondence between pairs of labels whose sums are 6 and the pairs of terms
whose products are 2. This is a one-to-one correspondence and it’s valid for all sums and
all dice- including the Sicherman dice and any other dice that yields the desired probabili-
ties. Let us suppose m!, m?, m?, ..., mfand n',n? n3,... n®beany two arrays of positive
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integer labels for the faces of a pair of dice with the property that the probability of rolling
any particular sum with these dice (random dice) is same as that of ordinary dice. Using our
observation about the products of polynomials this means that:

(x+2*+ 2% +2* +2° + 2% (2 + 2% + 2% + 2 + 2° +20)
= (™ + 2™ 4™ 4 2™ 2™ 4 20) X (2™ 4 2™ 4 2" 2™ 4 2™ 4 2"0) (4.1)

Now we have to find m/s and ns by solving this equation[1]. Here is where the unique
factorization property of Z[x] helps us.

The polynomial z + 2% + 2% + z* + 2° + 2% has the factorization into irreducibles as
z(x + 1)(z* — x + 1)(2*> + = + 1). Hence, the LH.S. of Equation 4.1 has the factoriza-
tion: 22(x 4+ 1)%(2? — 2z + 1)*(2* + = + 1)~

So, this means that these factors are the only possible irreducible factors of P(z) = 2™ +
M2 4 ™3 + ™ 4 ™5 + ™6, Thus, P(x) has the form 2¢(z +1)%(2? — 2+ 1)%(22 + 2+ 1),
where 0 < a, b, c¢,d < 2. To narrow down on further possibilities for these four parameters,
we evaluate P(1) in given two ways:

P(1)=1™ +1™ 4 ... 417 = .

and P(1) = 192°3¢1
This means that b=1 and c=1. Evaluating P(0) in two ways shows that:

P(0) = 0™ + 0™ 4 - 4 0™ = 0,
and P(0) = 0°1°1¢17.

Thus, a # 0. If we take a=2, the smallest possible sum one could obtain with the random
dice would be 3. Since this is in contradiction with our assumption, the only possibilities
left for a, b, ¢, d are a=1, b=1, c=1, and d=0,1,2.

For, d=0, P(z) = x + 2* + 22 + 2% + 2 + 2%, hence, die labels are 1, 2,2, 3, 3, 4 a Sicherman
die.

For d=1, P(z) = z + 2* + 23 + 2* + 2° + 25, so, die labels are 1, 2, 3,4, 5, 6 an ordinary die.
For d=2, P(z) = = + 23 + 2% + 2% + 25 + 28, so, die labels are 1,3,4,5,6,8 the other
Sicherman die. [
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The Cayley’s Table for both the pair of dice is as under:

@1 2 3 4 5 6 /1 2 2 3 3 4
112 3 4 5 6 7 112 3 3 4 4 5
213 4 5 6 7 8 314 5 5 6 6 7
314 5 6 7 8 9 415 6 o6 7 7 8
415 6 7 8 9 10 516 7 7 8 8 9
506 7 8 9 10 11 6 (7 8 8 9 9 10
6 |7 8 9 10 11 12 819 10 10 11 11 12
Table 1: Ordinary Dice Table 2: Sicherman Dice
CoNcLUSIONS

This proves that the Sicherman dice does give the same probabilities as the ordinary dice
and that it is the only other pair of dice that has this property.
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MATHEMATICS AND THE RUBIK’S
CUBE

Samarth Rajput
Year II

ABSTRACT

Rubik’s Cube is a very famous 3-D puzzle invented by Hungarian sculptor and
professor of architecture Erné Rubik in 1974. The toy has been in the market for
a long time and is still capable of capturing a good sale, which shows the popu-
larity and uniqueness of this simple-looking toy. Mathematicians have shown
a lot of interest in the Rubik’s Cube but they didn’t stop right after solving it.
They looked further for the hidden mathematical logic in the cube. After doing
a lot of research, they were able to link the plaything with the concept and the-
orems of abstract algebra. This paper is concerned with the permutation groups
of a Rubik’s Cube and how they are applicable in search of the maximum num-
ber of possible combinations of a Rubik’s Cube that can be solved. In this paper,
we’ll be dealing only with a 3 x 3 Rubik’s Cube.

INTRODUCTION

A 3 x 3 Rubik’s Cube consists of 6 faces and each one of them is differently coloured. The
combination of the cube can be changed by rotating the faces of the cube. Each one of the 6
faces is composed of 9 facets and on each face the center facet is fixed and can’t be moved.
In total, there are 54 facets (9 X 6 = 54) and to solve a Rubik’s Cube all the 9 facets of a face
must be of the same colour.

A 3 x 3 Rubik’s Cube is made up of 26 cubies. There are 6 center cubies, 8 corner cubies and
12 edge cubies. Center cubies are fixed with 1 facet each, as mentioned earlier. A corner
cubie has 3 facets each and an edge cubie consists of 2 facets each. When a Rubik’s Cube
is rotated, only the edge and corner cubies change their positions in such a way that they
move on to some other edge and corner respectively. The faces of the cube can be rotated
by 90°,180°, 270° in clockwise or counter-clockwise direction. A 90° turn is considered as
1 move and a 180° turn makes it 2 moves, and so on[3].

23
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(b) A solved 3 x 3 Rubik’s Cube: All the 9 facets

(a) A puzzled 3 > 3 Rubik’s Cube: All the of each face are of the same colour i.e., each face

9 facets of a face are not of the same colour. .
is of one colour only.

Figure 5.1

Each move makes a lot of positional changes in the cube. Now, let’s say we have a 3 x 3
Rubik’s Cube. Consider a group G of transformations of the Rubik’s Cube. Before moving
ahead, let’s label the different facets of the Rubik’s Cube and number the non-center facets
from 1 to 48 to see that a Rubik’s Group can be regarded as a permutation of the numbers
1,2,3,4,...,48, thus forming a symmetric group Sys. This will also give us an idea of how
a turn changes the positions of the facets. Let:

U = Upper Face of the cube

L = Left Face of the cube

R = Right Face of the cube

D = Downward Face of the cube
F = Front Face of the cube

B = Backward Face of the cube

Note: All the above face labels denote the 90° rotation of the respective faces in the clock-
wise direction.

On rotating the upper face by 90°, the edge cubies of U get permutedby4 — 2 =5 = 7 —
4 and similarly, corner cubies of U are also permuted. Cubies of other faces are also per-
muted along with the cubies of U. The permutation of the cubies of U can be written as dis-
joint 4-cycles. The disjoint cycle of edge cubies of Uis (4,2, 5,7). 4-cycles are odd permuta-
tions. For example, let’s consider the 4-cycle (4,2, 5, 7), it can be written as (4, 2)(2,5)(5, 7),
as we can see, there are three transpositions of U which ensure that 4-cycles are odd per-
mutations. But, the product of two odd permutations is even, the product of two even
permutations is also even and the product of an even and an odd permutation is odd and
each face turn is an even permutation of the cubies as each face turn is a composition of
4-cycles on the corners and 4-cycles on edges.

U=(4, 2, 5, 7)(1, 3, 8, 6)(9, 33, 25,17)(10, 34 ,26, 18)(11, 35 , 27 ,19)
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1123
4 | U| 5
6| 7| 8
Q110 1117 [ 181925 26| 27| 33 (34 | 35

12| L |13]20( F |21|28| R 29|36 B (37

14 1516222312430 (31|32]|38|39]|40

41| 42|43

441 D | 45

46 | 47 | 48

Figure 5.2: Cubie Labelling Showing G' < Sys[4]

The above permutations are the result of a 90° turn of U in the clockwise direction. We
know that, U is a product of disjoint 4-cycles, which means that

U—l — U3

Possible permutations for the other 5 faces of the cube:

L =(9,11,16,14)(10, 13, 15,12)(1, 17,25, 17) (4, 20, 44, 37) (6, 22, 46, 35)

R = (17,19, 24,22)(18,21,23,20)(6, 25, 43, 16)(7, 28,42, 13)(8, 30,41, 11)

F = (25,27, 32,30)(26, 29, 31, 28)(3, 38, 43, 19) (5, 36, 45, 21)(8, 33, 48, 24)

B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12,47, 29)(1, 14, 48, 27)
D = (41,43, 48,46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39) (16, 24, 32, 40)

Any combination in the Rubik’s Cube can be described as a permutation from the solved
state, which means that G is a subgroup of a permutation group of 48 elements. Here, we
have formed a specific group of Rubik’s Cube, G= < U, L, R, F\, B, D > which is a subgroup
of 548'
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ORDER OF THE GROUP

Now, we know about permutations, and we’ll proceed to calculate the order of the Rubik’s
Cube group or maximum possible combinations of a Rubik’s Cube from where we can bring
it to a solved state. Suppose, we have dismantled a Rubik’s Cube and all the edge and corner
pieces are out but the center pieces are at their positions. We have 8 corner pieces and 12
edge pieces. Now, we’ll notice that there are 8 corner positions and any of the 8 corner
pieces can be placed at any of them. While placing the first corner piece, we have 8 posi-
tions and it can be placed at any one of them, after placing 1 corner piece, we have 7 corner
places to position the second piece and so on. In the same way, edge pieces can be placed
at 12 different positions.

Total possible positions of edge pieces = 12!
Total possible positions of corner pieces = 8!

As mentioned earlier, each edge piece is made up of 2 colours, so any of the 12 edge pieces
can be placed in a cube in 2 different ways or simply, by flipping the colours which means
we have twice as many ways to put those edge pieces at 12 different places. Similarly, any
of the 8 corner pieces can be placed in 3 different ways, as each corner piece is made up of
3 different colors.

No. of ways in which edge pieces can be placed (Edge Flips) = 2!2
No. of ways in which corner pieces can be placed (Corner Twists) = 3%

Maximum possible combinations = 12! x 8! x 2!2 x 38

However, not all of these are possible to solve. It’s impossible to have one and only one
edge flipped which means only half of the combinations are solvable. Similarly, only one
corner can’t be twisted and the rest of the cube solved, which brings down the number to
two-third of the number produced after removing half of the impossible cases produced due
to the flipping of a single edge piece. It is also not possible to have only 2 pieces switched
because each move is the composition of 4-cycles on the corners and the edges, and as
discussed earlier, the product of two odd permutations is even. Only even permutations are
allowed. Only half of the permutations are even. Thus, maximum possible combinations:

12! x 8! x 212 x 38
2x2x%x3

= 43,252,003, 274, 489, 856, 000

[2]

CoONCLUSIONS

The number of possible combinations of a 3 x 3 Rubik’s Cube that can be solved are

43,252,003, 274, 489, 856, 000
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and this is known only because of the application of mathematics. There are a lot of other
applications of the permutation groups too which can be useful in solving a scrambled Ru-
bik’s Cube, but are out of bounds of this paper.
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ON SOLVING A CUBIC EQUATION

Daksh Dheer
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ABSTRACT

In the 19th century, Evariste Galois proved that all algebraic equations of de-
gree higher than 4 cannot always be solved by radicals, i.e. there does not exist
a formula that relates the roots of the equations to their coefficients using the
operations of addition, multiplication, subtraction, division, exponentiation and
taking n roots. However, equations of degree 1, 2, 3 and 4 are solvable by rad-
icals. This article attempts to introduce one such formula; specifically, one that
can solve a cubic equation.

Keywords: Cubic Formula, Cubic Discriminant, Depressed cubic, Cardano’s formula

INTRODUCTION

In algebra, an equation of the form ax® + bxz? + cx + d = 0 such that a, b, ¢, d € R is called
a cubic equation in one variable. The solutions of the equation are called its roots[6]. By
the Fundamental Theorem of Algebra and the fact that complex roots occur in conjugate
pairs, there always exists a real root of every cubic equation. However, unlike the quadratic
formula (which enables one to quickly find roots of a quadratic equation), a cubic formula
is rarely discussed in high-school and most undergraduate courses. We attempt to derive
such a formula in this article[2].

The cubic formula was first published in 1545, by Girolamo Cardano in his book, ‘Ars Magna’.

Cardano attributed the formula to Scipione del Ferro. However, another mathematician, Nic-
colo Tartaglia, had also independently discovered a formula for solving cubics.

DEpPrESSED ForMm oF A CUBIC

All general cubics can be reduced into a depressed cubic of the form

Y +py+q=0

28
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which is much easier to solve, and hence, shall be the focus of this article. Reduction of a

general cubic into this form can be done by a simple change of variable x = y — % This
b

substitution is motivated by the fact that the inflection point of the general cubic has —2-
as its abscissa (see 6.1). The abscissa of the inflection point can be evaluated by equating the
second derivative to zero. Graphically, this amounts to shifting the coordinate axes such
that the inflection point now lies on the y-axis (see 6.1).

[}

Figure 6.1: Shifting of the graphs

To revert to the original equation, one can simply use the relation y = = + 3—2; Thus, there
exists a bijection between a general cubic and its depressed form. Hence, solving the de-

pressed cubic amounts to solving every cubic.

NUMBER OF SOLUTIONS

We know by the Fundamental Theorem of Algebra, that every cubic has at least one real
root. In this section, we shall determine a cubic discriminant, which will allow us to decide
how many real solutions exist. Since, complex roots occur in conjugate pairs, a cubic equa-
tion has exactly one real root or exactly three real roots, not all distinct. Let us consider the
first case, i.e., there exists one real root. This means that the graph of the cubic intersects

the x-axis only once (see 6.2).

As a result, the length of the perpendicular drawn from the origin to the inflection point
on the y-axis is always greater than the distance between the inflection point and the local
maxima. Let us consider the positive difference between these distances. The length of the
perpendicular from origin to the inflection point is simply the y-intercept of the curve, g.
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(a) 1 Real Root (b) 2 Distinct Real Roots

]

(c) 3 Distinct Real Roots

Figure 6.2

Now, the other distance can be calculated by taking the difference between the ordinate of
the inflection point and the ordinate of the local maxima. We can get the local maxima by
equating the first derivative to zero and applying the first derivative test; the local maxima

occurs at the point x = 4/ =£, and thus the ordinate is y = %p, / %p + q. Hence, the distance

we require is simply %, [ =
Thus, the required difference is given by ¢ — %w / =L, and we need to solve the inequality
N

— >0
3 3
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which simplifies to
0\ (PY L
= =) >
)+ ()
This is the condition for a cubic equation to have one real root.

Note that here p represents the slope of the line tangent to the inflection point, which is

negative, and thus the quantity |/ =" is real.

Now;, let us consider the other case, i.e. there exist three real roots (not necessarily distinct).
This means that the graph of the cubic intersects the x-axis thrice (see 6.2). In case of a
repeated root, it shall technically intersect the x-axis twice, but for the sake of brevity, we
will consider that equivalent to three intersections. In this case the length of the perpen-
dicular drawn from the origin to the inflection point on the y-axis is always smaller than
the distance between the inflection point and of the local maxima. Hence, we can conclude
that the condition for existence of three real roots is given by

() <

Hence, this quantity acts as a discriminant for cubic equations and so we shall henceforth
refer to it as A for ease of writing.

COMPLETING THE CUBE

As the counterpart to completing the square technique in the derivation of the quadratic
formula, let us attempt the same in case of a cubic equation.

Consider the identity
(v+u)? =0 +u® + 3vu(v + u)

Re-arranging, we obtain
(v 4+ u)® — 3vu(v +u) — (v* +u?*) =0

Comparing this with our depressed cubic, we can deduce the following relations:

p = —3vu
¢=—(v"+u’)
y=v+u

Hence, if we obtain u and v, our original equation is a perfect cube and our equation is
effectively solved.

Solving the above equations, for u and v, and subsequently adding them, we get
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3

_ 2 q°
y = e T

N R

More compactly, the same formula can be written as
s/ 4 2 s/ 4 2
y= {5 +VA+{-;-VA

The above is called Cardano’s Formula[1]. Note that we are assuming the existence of a
solution by the Fundamental Theorem of Algebra and moreover, the system of equations
can be algebraically reduced to a quadratic equation in v3. Hence, it can be solved using the
quadratic formula.

A CoMPLEX DETOUR AND AN EXAMPLE

One may notice the fact that the cases of one real root or three non-distinct real roots, i.e.
when A > Oor A = 0, respectively, correspond to cube roots of real numbers and can
thus be calculated. However, in the case of existence of three distinct real roots, A < 0
and hence we are required to take the sum of two complex numbers. This might seem con-
tradictory and impossible; obtaining three real roots by adding up two complex numbers,
but it is possible since the two complex numbers being added are conjugates of one another.

Furthermore, a cube root of a complex numbers will result in three different complex num-
bers and hence, we shall have three pairs of © and v. Adding corresponding values of u and
v in a pair will give us the three required roots.

Now, let us solve an actual cubic equation using this method. Consider the following equa-
tion:

23 — 262% + 1932 — 420 = 0
Here,a = 1,b = —26, c = 193, and d = —420. Thus, replacing x by y — 3%, ie,y+ % and
simplifying, we get:

97 1330
3

S Py
Y= 3Y ™ Ty

Now,
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442225 912673 470448
= <0

A = — —
729 729 729

Thus, there exist 3 real distinct roots.

= {‘/—g+€/Z+f/—g—€/Z

Therefore, putting values we get:

e AT0448 5 470448
v 729 729
\/ 1330 /442 \/ 1330 [44%
— 1

3

Calculating these cube roots (one method of doing this can be first converting them to their
polar forms and then carrying out the operations; other methods exist too, but the final an-
swers remain the same), we get three different sums of conjugate pairs of complex numbers.
Adding them up, we get the following values for y:

Now, we know that

5 14 d 19
=——, —— and —
Y773 73 3
Now, using the relation, z = y — 3% =9+ 23—6, we obtain the solutions to our original
equation as:
r=7,4and 15

THE GENERAL CUBIC FORMULA

We have seen before that every general cubic can be reduced to a depressed cubic and we
derived a formula for solving such a reduced equation[5]. However, since the mapping
from general cubics to depressed cubics is bijective, we can also derive a direct formula for
a general cubic as follows:
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_ b+3< b be d) ( b be d>2+(c b?
*T T34 \ 27a®  6a? 2a 27a®  6a? 2a 3a 9a?

CoONCLUSIONS

We come to the conclusion that every general cubic equation can be reduced to a depressed
cubic and solved using the formula derived above. In case of three real distinct roots, the
cubic formula outputs answers as sum of complex conjugates and thus, it is beyond the
curfew of high school mathematics and is rarely discussed at that level, even though it is
algebraically calculable.
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APPLICATION OF LINEAR ALGEBRA
IN SOLVING GPS EQUATIONS
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ABSTRACT

This article is an attempt to describe the working of the Global Positioning Sys-
tem (GPS). The mathematical equations involved in the process of determining
the position of a receiver are described. Finally, some principles of Linear Al-
gebra are used to solve these equations and get the receiver’s location.

Keywords: GPS, Pseudorange

INTRODUCTION

Global Positioning System (GPS) has a wide range of applications in various industries such
as military, aviation, marine and agriculture. With the development of smartphone appli-
cations with GPS capabilities, many people use the GPS navigation services of these ap-
plications to find their location or to get directions to their destination. Some smartphone
applications which rely on GPS services to function efficiently are Google Maps, Uber, Ola
and Swiggy. But, how does the GPS find the exact location of a user? What is the role of
Linear Algebra in finding that position?

W oRkING OF THE GPS

The GPS is a satellite-based radio navigation system that is owned by the United States
Government[2] . It uses the process of trilateration to locate a specific point on the earth.
This means that it uses the distance between the receiver and at least 3 satellites to deter-
mine the receiver’s position. A GPS system consists of GPS satellites orbiting the earth
which transmit signals in its direction. The signal transmitted from each satellite is en-
coded with the ‘Navigation Message, which can be read by the user’s GPS receivers. The
navigation message includes orbit parameters from which the receiver can compute satellite
coordinates.
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These are the Cartesian Coordinates in a geocentric system which has origin at the earth
centre of mass, Z-axis pointing towards the North Pole, X pointing towards the Prime Merid-
ian, and Y at right angles to X and Z to form a right-handed orthogonal coordinate system.
The time at which the signal is transmitted from the satellite is encoded on the signal. The
satellites carry very stable atomic clocks to record the time. Time of signal reception is
recorded by receiver using an atomic clock. The receiver measures the difference in these
times. This is used to calculate the pseudorange, which is defined as[1]:

Pseudorange= (time difference) x (speed of light)

Pseudoranges include clock errors because the receiver clocks are not perfect. Hence, in-
cluding the unknown receiver clock error and the coordinates of the unknown station, we
have 4 unknowns. Hence, we need atleast 4 pseudoranges and hence, signals from 4 GPS
satellites[1]. Corresponding to each pseudorange, the following equation can be obtained:

Pseudorange = Range (distance between receiver and satellite) + Clock Error

Hence, we get 4 non-linear equations in 4 unknowns. This system of equations is then
linearized and solved using linear algebra.

EvaruaTioN OF PSEUDORANGE

The method used in this section to evaluate the pseudorange is adopted from[3]. Let the
location of the receiver be (X, Y, 7). Let the location of i*" satellite be (X;, Y;, Z;), its signal
travel time be At;, and the range of the receiver from that satellite be R;, where ¢ varies
from 1 to 4.

Let Aty denote the clock error and At,,, denote the time difference measured by the re-
ceiver. Let c denote the speed of light. Then,

R, = At.c (7.1)
Atsati - Atz—FAto (72)

Let p; denote pseudorange for the i satellite, where i varies from 1 to 4.
Pi = Atsati-c
From equation (7.2), we have:

Substituting At; from equation (7.1) in equation (7.3), we have:

pi = Ri + Aty.c (7.4)
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Figure 7.1

The range R, from the satellite to the receiver can be calculated in a Cartesian system as
follows:

Ri= /(X = X) + (Y= V) + (% - 2) (7.5)
Putting the value of R; from equation (7.5) in equation (7.4), we get:

pi = \/(Xi — X+ (Y, =Y+ (Zi— 2)* + Atg.c (7.6)

Please note that equation (7.6) is a system of 4 non-linear equations. The next step is to
linearize this system of equations so that it can be solved using the principles of Linear
Algebra.

LINEARIZATION OF THE EQUATIONS

The method used in this section to linearize the system (7.6) is adopted from[3].
According to Taylor’s series,

7@) = S+ L gy o LE oy Ty
Let Az = 2 — . Then,
@) = o) + T gy ¢ 0 gy T 0
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Simplifying only first 2 terms, we get:
f(@) = f(@o) + f'(wo).Ax (7.7)

In equation (7.7), x is an arbitrarily estimated value about which, the function’s value is
estimated. We have a similar motive for R; in equation (7.4). We have to linearize R; so that
we can estimate its value and linearize the system of 4 equations described in (7.6). Hence,
we need to incorporate an arbitrarily estimated value z( in the vicinity of z. This means
that instead of calculating (X,Y,Z) directly, we use an estimated position (X, Y;, Z;) which

includes some unknown error.

Let RR;; denote the range of the receiver from the ith satellite, where i varies from 1 to 4.

Satellite 2

(X9, Ys, Zo¥s Satellite 3

)
’l (X?)a Y?n Z3)
1 R

N

N 1
__ N _ B gatellite 4

Satellite 1 _ _ __ ____ — o
(X1, Y1, Z1) Ray Receiveg(Xt: Yo, Z0) (X, Y4, Z4)
Origin Y
Figure 7.2

The estimated position includes an error produced by the unknown variables Az, Ay and
Az. Hence, the receiver’s coordinates are estimated as:

X = Xt + A.T
Y = Y, +Ay
7 = Z,+ Az (7.8)
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The range R;; from the i'" satellite to the estimated position can be calculated in the same
way as R; was calculated in equation (7.3):

R = (X; = X + (Y= V) + (7 - 2)° (79)

Taking R; from equation (7.3) as the function in equation (7.7), we get:

o (V06— X0+ - v+ (5 -

=/ (X=X + (Y=Y + (Z — Z,)°
Ri =/ (Xi = X0+ (Y = Y0P + (Z — 2 + —

o (\/(Xi X))+ (Y- Y) + (i - Zt)z)

) <\/(Xi - X))+ -Y) + (Z - Zt)2>

+ Ay +

oy ox

—2(X; — Xy)

S Ri= (X = X)P+ (Y- V) (Z— Z) +

2/ (X = X0+ (Vi — VP + (2, - 2,)°

+ ( ) Ay + ( )
2/~ X+ (Vi VP (Z- 2 2 (X - X (Y- YR+ (Z - Z)°
(7.10)
Substituting R,; from equation (7.9) in equation (7.10) we get:
X -X Y=Y Z-Z
TR, TR YT TR, 710
Now, substituting ?; from equation (7.11) in equation (7.4), we get:
X — X, Y,-Y Zy— Z;
pi = Ry + == Az + = Ay + = Az + e At (7.12)
Ry; Ry; Ry;

Equation (7.12) now represents a system of 4 linear equations which can be solved using
Linear Algebra.

SorLviNG THE EQUATIONS

The method used in this section to solve the system (7.12) is adopted from[3]. Equation
(7.12) can be rewritten as:

X — X, i Y

Z - 7,
A A
Re T TR, YT TR,

pi — Ry =

Az 4+ Aty (7.13)

The system of linear equations (7.13) has to be solved for the variables (Az, Ay, Az and
Atp). To do so, it can be expressed in the form of matrix equation AX = B, where:

Az

Az

Az

Az
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rX:—X4 Yi— 11 Zy—74
XtR—tBQ YE}E% ZtR—téz
A = XtR—%Q KR—%’:& ZtFL_t%S
XtRj?Xz; Kstth th%j%4
L Ry Riq Ry
[ Ax

X = ii’ (7.15)

| Aty
-Pl — Ry

B — Z:gz (7.16)

| P2 — Ry

(7.14)

O O O O

Using the matrices described in the above equations, AX = B for the system (7.13) is:

XtR;XI YEm Zng c A o — R
Xt—]X2 Yt—iﬁ Zt_%2 A R
R, R R, ¢ Y| _ P2 — L 717
thgfg Y},*%/g th?Zg A - _ R ( . )
Rea, Rug, Rus, ¢ z P3 t3
X2 Y2 7, B
B R m. € Aty ps — Ry
To solve for X, (7.17) is pre-multiplied by A~! to get X = A™'B, i.e.,
Xi—X, Yi-Yi Zi—2 ~1
AI‘ th . tRz . 3%,5 toc P1— Rtl
Ay XEB(Q Yt};k, Zgbg c 9y — Rin
AZ = Xt—tg(g }/'t—t?g Zt—t%g c p3 - Rtg (7.18)
Ry Ry Ry
Ato] | dge gk 2 o] | pi— Ru

The system (7.18) gives the value of the matrix X which gives the values of Az, Ay, Az
and Atg. Using the equations (7.8), we can find (X, Y, Z). However, these values still have
some error (which corresponds to Az, Ay and Az respectively).

Hence, our aim is to decrease the error component as much as possible so that we can
get more accurate value of (XY, 7). To accomplish this, we estimate a new set of val-
ues, X,ew, Ynew and Z,.,, using the calculated (XY, Z) values as X4, Y1q and Z,4 in the
following equations:

Xne'w = Xold + Az
Ynew = Yold + Ay
Znew = Zold + AZ (7.19)

where Az, Ay and Az are unknown errors.
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The new estimated position (X,ew, Ynew, Znew) is entered in place of X3, Y; and Z; in the lin-
ear system (7.18) to get the values of Az, Ay and Az for this new estimation. The same iter-
ative process is repeated until the error components are less than the desired error. Hence,
in order to determine a position, the receiver will either use the last measurement value,
or estimate a new position using (7.19) and calculate error components down to zero by
repeated iteration. After we have satisfactorily low values of Az, Ay and Az, the final
position of the receiver is calculated as:

X = Xnew
Y = Ynew
7 = Znew (7.20)

Hence, (7.20) gives the final value of (X, Y, Z). The calculated value of Aty at this point
corresponds to receiver time error and can be used to adjust the receiver clock.

CoONCLUSIONS

These calculations ignore some other sources of GPS errors such as the effect of ionosphere,
the effect of troposphere and multipath errors. DGPS, SBAS, A-GPS and HSGPS are some
of the improved GPS which give more accurate positions. However, one can appreciate the
role of Linear Algebra in the whole process of GPS positioning.
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ON ACUTENESS OF RANDOM
TRIANGLES

Shivam Baurai
Year II1

ABSTRACT

The problem addressed in this article relates to finding the proportion of all tri-
angles which are acute. This problem is solved here by using concepts from
elementary geometry, linear algebra and geometric probability. From the dis-
cussion on acute angles, results on right and obtuse triangles follow immedi-
ately.

The objective of the article is to consider the problem of finding the proportion of all tri-
angles which are acute. The approach is surprisingly elementary and uses concepts from
elementary geometry, linear algebra and geometrical probability. Since only the shape of a
triangle is sought, and its features such as perimeter and area are irrelevant, we do not re-
quire any information more than the fact that we’re working with a triangle. Furthermore,
since the sides of the triangle are not considered here either, we work with only the interior
angle sum.

Suppose x,y, and z are the angles of a triangle. Then, we have that x + y + z = 7, where
each angle must be positive. We have the additional condition for acute triangles that

T
Y,z < 5
An effective way to approach this system is to fix z as zy, and then consider the equation

x +y = 7 — zp. This projects the three-dimensional system into the XY-plane. We can now
graphically represent this situation in the XY-plane as follows:

42
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B(O,m) §

x+y=1(z0=0)

E(D,m/2) F{m/2,mi2)

X +y=m2(z0'5 m2)

A(0.0) (z0 =) D(m/2,0)

Figure 8.1

Notice that each point in the interior of the triangle ABC contains all the triplets (x,y, 2)
corresponding to a triangle, as the interior corresponds to x 4+ y < 7 and thus a suitable =z
may be chosen such that = + y 4+ z = 7. Meanwhile, each point on the boundary of ABC
cannot construct a triangle as one or two angles must be zero; and any point outside ABC
does not satisfy the interior angle sum property.

Also, observe that the interior of the triangle DEF contains all the triplets (x,y, z) corre-
sponding to an acute triangle. Notice that each point on the boundary of DEF corresponds
to one of z,y, 2 equalling 7. And any point outside DEF corresponds to one of the angles
exceeding 7 : x > 7 in region CDF; y > 7 in region BEF; and 2z > 7 in region AED. Thus,
the probability that a given triangle is acute is:

T T ArADEF

3)(5) 1
2|z<

3 (
3) = AAABC 1(m)(r) 4

Pr(x<g|y<

It is seen that given a triangle, the probability that it is acute is 411' Additionally, the triplets

corresponding to right triangles lie on the lines DE, EF and FD - as they correspond to

z = 5,y = 5 and v = 7, respectively. Since lines have zero area, the probability of a

random triangle being right-angled is zero! It also follows now that the proportion of all
3

triangles which are obtuse is .

BIBLIOGRAPHY

[1] Are random triangles acute or obtuse? - MIT Blossoms


https://blossoms.mit.edu/videos/lessons/are_random_triangles_acute_or_obtuse

THE THREE UTILITY PROBLEM

Apurva Chauhan
Year II

ABSTRACT

Henry Ernest Dudeney was a mathematician who specialised in mathematical
puzzles. He once stated that the problem discussed in this paper is “as old as
the hills ...much older than electric lighting, or even gas”. The utility problem has
been a part of many magazines. In this article we will try to find a possible
solution to our hoary problem using Graph Theory and the Jordan Curve The-
orem. We’'ll also solve the classical problem using one of the most fascinating
formulas of mathematics, given by Leonhard Euler.

INTRODUCTION

The utility problem is a sixty-four-thousand-dollar question. It is often referred to as a “very
ancient” problem. This problem is one of the most famous maths puzzles and many mathe-
maticians have tried to find an answer to this brainstorming puzzle. The problem is quoted
as:

“We have three houses and three utilities that are gas, water, and electricity and we need to
connect each house to all three utilities by drawing lines on a paper without any line crossing
each other as shown below:”

WATER GAS

First, we need to have a basic idea of Graph Theory, Euler’s formula, and the Jordan Curve
Theorem, because that is what we are going to use to find a possible solution to our problem.

44
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GrarH THEORY

Graph theory is the study of connectivity between points called nodes (or vertices) which
are connected through edges (links or lines). So, we will treat our houses and supplies as
vertices and we will connect them using lines called edges without any point of intersection
between them. In other words, we want a planar graph. A graph is a planar graph if it can
be drawn in such a way that there is no edge intersection[5].

Theorem. Any simply closed curve in the plane partitions the rest of the plane into two disjoint
arc-wise connected open sets, one inside and one outside. It means that a loop will have an inside
and an outside no matter how much we widen our lines, as long as the lines don’t intersect[1].

This is called the Jordan Curve Theorem.

EuLer’s FORMULA FOR PLANAR GRAPHS

It states that if a planar graph is drawn without any edge intersection then,

V-E+F=2
Where:
V' =number of vertices
E=number of edges
F=number of faces
(2]
SoruTioN

We will be trying to solve our problem through two possible ways using graph theory-
1. Using The Jordan Curve Theorem (see 9)

We will begin by joining some utilities to some of our houses. We joined the leftmost house
to gas and electricity, middle house to water and electricity and rightmost house to water[3].
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GAS WATER

Now, if we draw one more line from gas utility to the rightmost house we will have a loop.

GAS WATER

We can see that our loop has an inside and an outside. Now, we know that according to the
Jordan Curve Theorem a loop will always have an inside and an outside until the lines don’t
cross. Now, to draw the remaining three lines we need to decide whether we want to draw
these new lines inside or outside our loop. Joining the leftmost house to water will be easy
but as we can see below for joining the other 2 lines we would definitely have to cross.

o

GAS WATER

Therefore, from Jordan Curve Theorem we have shown that it is impossible to draw them
without any line interaction.

2. Using Euler’s Formula for Planar Graph

We will first use Euler’s formula to find the number of faces a solution to our utility problem
must have.
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We know that;

V' = number of vertices=6,
E=number of edges=9,

Using Euler’s formula, we have
F=number of faces

F=24+E-V
F=2+9-6=5

So, we have five faces according to our Euler’s formula for planar graphs. We know that
we can never connect 2 houses or 2 supplies together, that is we can never have 3 edges
to a face. The problem states that connecting lines can only be drawn between houses and
utilities. Which means that each face will have at least 4 edges. This implies that 5 faces
will have at least 20 edges (5 x 4). But this counts each edge twice because every edge is a
boundary for 2 faces. Therefore, we will take the smallest number of edges[4].

-5 =

E 10

But, according to the problem we can have only 9 edges!

CONCLUSIONS

The solution to the three utility problem is ‘impossible’. It is impossible to connect the
houses in the Euclidean plane (a flat sheet stretched to infinity).
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THE LOGARITHMIC SPIRAL

Khushi Agarwal
Year I

ABSTRACT

This article is an attempt to provide some basic information about the famous
logarithmic spiral. It includes the mathematical representation of the logarith-
mic spiral, its existence in nature, and a few of its real-world applications.

INTRODUCTION

We all are familiar with the logarithmic function and the ease with which it simplifies the
otherwise time-consuming calculations. The logarithmic spiral was initially described by
Descartes, but soon it grabbed the interests of other mathematicians like jacob Bernoulli,
who named it “spira mirabilis” or “the marvelous spiral”[1]. The properties of the loga-
rithmic spiral fascinated Jacob to such an extent that he wanted it to be engraved on his
tombstone along with the sentence, “Although changed, I shall rise the same”, inscribed on
it. But unfortunately, the artisan carved an Archimedes’ spiral instead of the logarithmic
one on his tombstone.

THE LOGARITHMIC SPIRAL

The logarithmic spiral is a self-similar curve in which the size of the curve increases with ev-
ery successive turn, but its shape remains the same. The polar equation[1] of the logarithmic
spiral can be given as:

r = ae’

where ¢ is a real number with ¢ > 0 and b # 0 being real constants, and r and ¢ are the
polar coordinates of the curve (r is the distance of any point on the spiral from the origin).

Cartesian coordinates: The cartesian representation of the above spiral is written as:

r = ae’® cos, y = ae’¥ sin v
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(a) A logarithmic spiral[6] (b) Examples for a = 1,2,3,4,5 [7]

PRroPERTIES OF THE LOGARITHMIC SPIRAL

« The rate at which 7 increases or decreases is given by the constant a. The value of r
increases in the counter-clockwise sense if a > 0, forming a left-handed spiral, and the
value of r decreases in the counter-clockwise sense if a < 0, forming a right-handed
spiral[4].

« With an increase in ¢, the distance from the origin r increases in geometric progression[4].

« Itis also known as the equiangular spiral because the angle between the radius drawn
to a point from the center of the spiral and the tangent at that point remains constant
throughout.

« If we come towards the center of the spiral from any point on it, an infinite number
of rotations would be needed, but the distance covered in doing so will be finite[6].

How 1o consTrRUCT A LOGARITHMIC SPIRAL?

Logarithmic spirals can be constructed using golden triangles[3]. A golden triangle is an
isosceles triangle in which the ratio of the length of equal sides to the length of the third
side is equal to the golden ratio, 1.618034.

If we bisect one of the base angles of a golden triangle, another golden triangle can be
generated. This procedure can be continued an infinite number of times to create smaller
and smaller triangles. The vertices of these triangles can be joined to create a logarithmic
spiral.

LOGARITHMIC SPIRAL IN NATURE

It is quite fascinating that there exist many curves in several natural phenomena that roughly
resemble the logarithmic spiral. Some of them are as follows:

« The chambers inside the shell of a nautilus are arranged in a rough logarithmic spiral[5].

« An approximate logarithmic spiral can be observed in the arms of a cyclone[1].
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Figure 10.2: Golden Triangles inscribed in a Logarithmic Spiral[9]

« A special kind of broccoli, Romanesco broccoli grows in a pattern similar to the log-
arithmic spiral.

+ Logarithmic spiral-like pattern can also be observed in the arms of spiral galaxies.
The Milky Way galaxy has many spiral arms that resembles logarithmic spirals[1].

(a) Spiral shell of nautilus[10]

Figure 10.4: Arms of spiral galaxy
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CoONCLUSIONS

There are several other spirals like the Archimedean spiral, Euler spiral, Fibonacci spiral,
etc. The logarithmic spiral is as fascinating as any one of these. It is used to make spiral
bevel gears that are known for their excellent engineering characteristics[1]. It is also used
in frequency-independent spiral antennas. Also, the ways in which it exists in nature are
mind-blowing.
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MATHEMATICS IN PLANTS

Priyanka Chopra
Year II

ABSTRACT

This paper is an attempt to understand how mathematics is applied in plants.
Complex calculations happening in plants every day can be well-explained by
the mathematical concepts of Fibonacci Series and Golden Ratio. It focuses on
the Fibonacci Series in particular. The paper discusses few of the applications
of how mathematics is applied in various plants in brevity.

Keywords: Fibonacci Series, Golden Ratio

INTRODUCTION

Most of us are unaware of the fact that plants apply mathematics every single day to en-
sure that they have ample amount of resources to get through nights when sunlight isn’t
available. According to a recent analysis, plants cannot grow and thrive without mathe-
matics. From arrangement of leaves, shape, size, and structure of plants to preparing food
via photosynthesis, plants perform complex arithmetic calculations regularly. Formations
and patterns in plants are not accidental, rather there is a mathematical logic behind these
structures. It is commendable how symmetrical patterns can be observed in the arrange-
ment of leaves and modeled using DC2 equation which can generate most leaf patterns.

Moreover, it is astonishing how the Fibonacci Series is widely used in predicting the position
of the whorled leaves on stem. The Fibonacci Series can be used not only in studying the
spiral pattern of seeds in sunflowers, but also in calculating the number of petals of various
flowers.

While studying the structure of various plants, we get to realise that there is a well-ordered
arrangement of leaves. This uniform arrangement of leaves around the stem is termed
as phyllotaxis. Usually, the characteristics of this uniform pattern are explained in terms
of phyllotactic patterns, including distichous, decussate, tricussate and Fibonacci patterns
where spirally distributed tend to be separated by an angle of 137.5 degrees, also termed as
the Golden Angle, which is the radial equivalent of the golden ratio.
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xRy

Alternate Spiral opposite wharled

Figure 11.1: Patterns in leaves[4]

It is essential to understand the golden ratio of the Fibonacci Series to unlock the mystery of
these leaf patterns. Basically, in Fibonacci Series we take the sum of two preceding numbers
to calculate the successive number i.e., the series goes like 1, 1, 2, 3, 5, 8, 13, . . .. To calculate
the golden ratio, the ratio of two successive numbers in Fibonacci Series is taken and each
number is divided by the preceding number as follows:

1 2 3 5 8 13 21
= 1,2 29222152 =1666...,- =1.6, — = 1.625, — = 1.61538.. ..
[ =L1=25=15;=1666...,c =16 625, 13 = 161538
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Figure 11.2: Graph Plotting of Fibonacci ratios

The ratio appears to be settling down to a particular value, which we call the golden ratio or
the golden number. It has a value of 1.618034 approximately. Actually, the exact value of the
golden ratio comes out to be ®. As we proceed towards larger numbers in fibonacci series,
the ratio turns out to be more close to ® which can be explained by the basic Fibonacci

Relationship:
F(i+2)=F(G+1)+ F(i)

Therefore, as the series proceeds, the ratios get closer and closer to this limiting value ®.

History or FIBONACCI SERIES

Fibonacci Series is a significant contribution to mathematics by Sir Leonardo Pisano Bigollo,
popularly known as ‘Leonardo of Pisa’. This series turned out to be an outcome of an arith-
metic problem about Rabbit Breeding that was posed in the Liber Abaci. The problem which
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led to the discovery of Fibonacci Series was that starting with a pair of rabbits (1 male and
1 female), how many pairs of rabbits will be born in a year, assuming that every month
each pair gives birth to a new pair of rabbits, and the new pair of rabbits itself starts giving
birth to additional pairs of rabbits after the first month of their birth. Sir Leonardo ended
up with what we study today as Fibonacci Sequence while searching the solution for the
posed problem.

Later, it was Kepler who noted that in many different kinds of plants and trees, the leaves are
aligned in a pattern that includes two Fibonacci numbers. Starting from any of the leaves,
after one, two, three or five rotations of the spiral there is always a leaf aligned with the first
and, depending on the species, this will be the second, the third, the fifth, the eighth, or the
thirteenth leaf. This way Fibonacci became crucial not only in determining the structure
pattern but also counting the number of petals.

PATTERN OF VAaRIOUS FLOWERS USING FIBONACCI

Having a glimpse of some of the flowers in which the number of petals are in correspon-
dence with Fibonacci results and a definite pattern can be identified using the series.

(@) White Calla Lily-1-petal
flower [8]

(b) Iris-3-petal flower [6]

(d) Bloodroot-8-petal flower [5] (e) Ragwort-13-petal flower [9]

CONCLUSIONS

It is confounding how the number of petals can be calculated using Fibonacci series and
arithmetic calculations. It is perspicuous that there is a symmetrical pattern that is present
in plants both in leaves and flowers. Mathematics can help us remarkably in finding the
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reasons of existing things in nature. The pattern, size of leaves, number of petals, and pres-
ence of recurrent structure in plants are not accidental, rather they have reliable premises
which justify the way they are.

BIBLIOGRAPHY

[1] Shelley Allen, MASTER FIBONACCI The Man Who Changed Math, ISBN 978-15-3239-
349-5

[2] https://fibonacci.com/nature-golden-ratio/

[3] Klar, A. 2002. Plant mathematics: Fibonacci’s flowers. Nature. 417: 595
[4] Image by Maddie Burakoff via Smithsonian Magazine

[5] Image via Toronto Star

[6] Image via Kaggle

[7] Image by Jasmine Anenberg, Parks Conservancy

[8] Image via Michigan Bulb

[9] Photo taken at Mt. Cuba Center, accessed Mt.Cuba Center.org


https://fibonacci.com/nature-golden-ratio/
https://www.thestar.com/news/insight/2012/04/14/bloodroot_plant_makes_early_appearance_but_dont_touch_these_potentially_toxic_beauties.html
 https://www.kaggle.com/uciml/iris
https://www.parksconservancy.org/conservation/california-wild-rose
https://www.michiganbulb.com/product/giant-white-calla-lily-62457
https://mtcubacenter.org/plants/golden-ragwort/

PYRAMIDS AND MATHEMATICS
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ABSTRACT

This article is an attempt to show a real life application of mathematics asso-
ciated with the Great Pyramids of Giza. In this article, Egyptian mathematics
is briefly explained, followed by a reference to pyramids and how they encode
several mathematical constants within their geometry and construction. The
relation between Pi and Phi with the Great pyramids is discussed in order to
understand how these Pyramids are interesting from a mathematical point of
view.

Keywords: Pi, Golden ratio, Fibonacci’s numbers

INTRODUCTION

The Great Pyramid of Giza is the oldest monument on the list of seven wonders of the world.
It is a marvel of human engineering and construction. Till date, the biggest mystery about
pyramids is the techniques used in their construction to erect them. It is a standard claim
that the structure of the Great pyramid encodes a number of mathematical and physical
constants. For example, it is quoted that

“Dimensions of Great Pyramids contain the value of Pi, the principle of the
golden section, Euler’s number, the number of year in tropical year, the relative
diameters of the earth at the equator and poles,..., the acceleration of gravity
etc”[1].

Mathematics was an inductive discipline of utilitarian nature during the ancient Egyptian
era. It was developed as a deductive science by the Greeks. Therefore, there is no evi-
dence that Egyptian mathematicians used concept of textual geometry with construction
and proofs. We get most of the information of Egyptian mathematics from the two major
mathematical documents that have survived i.e. Rhind and Moscow papyri[2]. However, the
mathematics involved in the Great Pyramid is so perfect that it is not limited to these two
documents per se.
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In the coming sections, connections between Pi, Phi, and Great Pyramids is discussed, since
Pi and Phi are the two most important mathematical constants. It is fascinating to know
how the connection between these constants and the pyramid might have been indented,
but in a very different methodologies in a much more sophisticated manner.

P1 AND THE GREAT PYRAMID

The perimeter of the base of the Great Pyramid divided by twice its height gives 3.150685,
which is a remarkably accurate estimate of Pi. However, even though the pyramid gives
a fair enough approximation of Pi, there is a reason to doubt that ancient Egyptians even
had a concept of Pi, since the famous Rhind mathematical papyrus (written during the 13
dynasty) gives the value of Pi (3.160494), less accurate than the value of Pi obtained from
pyramids erected in the 4" dynasty. But, there is another side to this conundrum. The rela-
tion between slope and Pi is given by the equation:

4
tan51.85° = —
T

where 51.85° is the slope angle of the pyramid and the value of Pi obtained from this equa-
tion is 99.99 % accurate. One may look back at the system of measurements used by Babylo-
nians, especially Egyptians, known as the method of seked. Seked is a measure of the slope
where,

« 1 cubit = 7 palms
+ 1 palm = 4 digits

The theory says that the Great Pyramid is based on the application of a gradient of 5.5
sekeds. This method of Egyptian mathematicians (based on Rhind papyri), and the ways
in which they represented lengths and slopes give a very high probability that they might
have chosen the angle of at least one of the pyramids to be approximately equal to the value
%, which exhibits the amazing relationship between Pi and the pyramid. Due to this, one
might believe that this relationship can be an accidental resultant of their mathematics.

The importance of Pi was intriguingly represented while seeking a solution to the most fa-
mous and intricate problem ever posed in history called “Squaring the Circle”. Egyptians
were also tackling this problem and it was only after the understanding of the nature of Pi,
this problem found some lead. With an aid of simple geometry and instruments such as
compass and ruler, it seeks to find area of a square equal to the area of a given circle. In
the late 19" century we came to know that such a task is impossible to perform as a con-
sequence of the Lindemann-Weierstrass theorem which proves that Pi () is transcendental
and not like an algebraic irrational number that is the root of any polynomial with rational
coefficients[?]. But there exists an interesting view to squaring the circle exercise since it
was believed to have symbolic meaning:
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Because the circle is an incommensurable figure based on 7, it is impossible to
draw a square more than approximately equal to it. Nevertheless, the Squaring
of the Circle is of great importance to the geometer-cosmologist because for
him the circle represents pure, un-manifest spirit-space, while the square rep-
resents the manifest and comprehensible world. When a near-equality is drawn
between the circle and square, the infinite is able to express its dimensions or
qualities through the finite[3].

Therefore, the accurate approximation gives in itself a sense of aesthetic satisfaction, and
the amazing fact is, the Great Pyramid squares the circle. If a circle is drawn in such a man-
ner that its centre lies in the centre of the base of the pyramid, with a radius equal to the
height of the pyramid then we get the circumference of the circle equal to the perimeter of
the square containing the pyramid. Such geometry approximates the solution of “squaring
the circle” sough by ancient geometers.

Px1 AND GREAT PYRAMID

When the slant height of the face of the pyramid is divided by half the length of its base, the
answer is Phi, Golden Ratio (1.61803...). Phi is the only number which has a very unique
property of its square equal to one more than itself i.e.

o+1=0¢%

By observing such property of phi one can apply the Pythagorean equation to this, for ex-
ample in the Golden Triangle. One can construct the golden triangle (also called Kepler’s
triangle) with sides ¢, 1 and \/¢ as shown in figure 12.1.

Figure 12.1: Golden Triangle

This can create pyramid constructed with the help of two such triangles placed back to back.
Now, the ratio of height to the base is

\/—6 =0.636...

1
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An interesting computation is that the Great Pyramid has a base of 230.4 meters and an
estimated (original) height of 146.5 meters. Now, we get

146.5

2304 0.636. ..
This implies that Great Pyramid is also a golden triangle within three decimal places of ac-
curacy. The pyramid based on the golden triangle has yet another interesting feature as
well. For example, the surface area of the four sides of the pyramid will be the Golden Ratio
of the surface area of its base. Calculation of the area of triangular sides can be given by
basexheight 1 2 % 2. or ¢. The surface area of the base is 4, so the four sides are 4 x %, or ¢

2 27
for the ratio of sides to base.

Another interesting, rather amazing information we get in accordance with phi’s relation
with pyramids comes from the relation of Golden Ratio (Phi) with the famous Fibonacci
Sequence. The Fibonacci Sequence starts with 1 and 2. Every new number is the sum of the
preceding two numbers.

The Fibonacci numbers are: 1,1, 2, 3,5, 8,13, 21, 34,55, 89, 144, 233, . ... Now, if we divide
each number with previous number and keep repeating the process, we get

1/1=1,2/1=2,3/2=1.5,...,144/89 = 1.6179...
We observe that the successive ratio approaches 1.618, the golden ratio.

The mathematical astonishment is that, there is a Fibonacci’s spiral that runs through the
centre of three large Giza Pyramids, the three famous pyramids known i.e. Pyramid of
Khufu, Pyramid of Menkauru, Pyramid of Khafre. This is indeed the fascinating real life ap-
plication of the Sacred Geometry[4].

It is also said that the Great Pyramid of Giza is known as the Fibonacci Pyramid since it is
constructed with Fibonacci numbers[5]. In the following page is a pictorial view of such
construction.
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CoONCLUSIONS

The discussion regarding Pi, Phi, and the Great Pyramid of Giza gives an incredible real-life
application of the beauty of mathematics. It is because history provides evidence that even
if Egyptian mathematicians in ancient times used the numbers such as Pi and Phi, it’s still
a vague assumption that they even had any concept of these numbers in the decimal repre-

sentation, since it was only after almost a century that the references of Phi were used by
Greeks.
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It then becomes feasible to believe as some do, that Egyptians might have used the integer
approximation in their designs which resulted in the same relationships. Also, it is quite
reasonable to believe this side as we know, both Pi and Phi (it’s square root value) are such
numbers that can be calculated approximately using simple integers that too with high
degree precision.

_ 22 — 196
=% and<b—121

Also, one can also claim the possibility that perhaps Egyptians intended to use one of them
in the dimensions of the pyramid and the other got automatically included. There are sev-
eral questions regarding the construction techniques of pyramids from a mathematical per-
spective. No one is completely sure of how were pyramids actually designed. However,
whatever is known one can say that the specification of a particular choice of the geometry
for the Great Pyramid was doubtlessly done with some intention since it is different from
the rest and truly perfect.

The Great Pyramid is one of the exquisite examples of the fact that beautiful, properly
aligned, and coordinated things with nature require such a degree of mathematics in them.
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VERY SMALL PROOFS
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ABSTRACT

In this article, ‘clever’or ‘simple’proofs of seemingly abstract problems are pur-
sued, which are especially smaller than conventionally quoted proofs of the said
results.

WiLsoN’s THEOREM

Lemma. Let G = {ay,as,...,a,} be a finite abelian group and suppose that G has only one
element of order 2, y. Then, [}, a; = y.

Theorem. For a primep, (p — 1)! = —1 mod(p)
Proof. Consider the multiplicative group, U(p).
Ulp) ={n € Z, | gcd(n,p) = 1} ={1,2,3,...,p — 1} is cyclic. Thus, G has ¢(2) = 1

element of order 2, which is p — 1.
Then, as per the lemma, (p — 1)! = (1)(2)---(p—1) =p— 1= —1 mod(p)

THE IRRATIONALITY OF \/%

Theorem. 'k is irrational Vk € N : k is not a perfect square.

Proof. Assume otherwise. Then,\/k can be represented in lowest terms as: vk = = where
m,n € N and ged(m,n) = 1. Also note that since k is not a perfect square, 3j € N:
j < Vk < j+ 1. Now:

Lj<Vk<j+l=j<Z<jt+l=nj<m<nj+n=0<m-nj<n
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2. Suppose,
kn—jm m
m—jn n
Then,
an—jmn<m2—jmn:>lm2<m2:>k<(%)sz

which is a contradiction. Similar contradiction is reached if the inequality is reversed.
Thus, it is concluded that
kn—71m m
rmegme e
n

m— jn

. kn—jm - : : m
It is clear that 1S an expression of vk (from (2)) in terms lower than ™ (from (1)),
which is a contradiction.

Thus, vk must be irrational. O]

A THEOREM ON RATIONALITY OF EXPONENTIATION OF
IRRATIONALS

Theorem. There exist two irrationals a, b such that a® is rational.

Proof. Let a = V2 and b = /2.

2
Then, a® = \/ﬁf
If it is rational, we are done.

Otherwise, put ¢ = \/5\& and d = /2. Then,

= (V2 e = 2 = VB =0

which is rational. [
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ONE-STEP AT A TIME

ABSTRACT

Exploring the concept of defining a function between two non-empty sets and
using it to solve a seemingly unrelated puzzle is the main objective of this arti-
cle.

Keywords: Function, Bijection

WHAT 15 A BIJECTION?

A function between two non-empty sets is said to be a bijection if it is both injective and sur-
Jjective. Here, the domain and co-domain have intentionally been disguised because when-
ever there exists a bijection from a set to another, then an inverse map can also be defined
the other way around.

Lets take a descriptive figure: Let f be a function f : A — B, such that f is both injective
and surjective then the mapping looks somewhat like this:

Figure 14.1

Problem: Determine the number of walks from (0, 0) to (m, n) allowing only unit steps up or
to the right.

Solution: In this question, we try to morph the situation into something familiar. We try
to symbolize each step and represent a right step by R and an up step by U. As an example,
consider the following path:
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According to our scheme we can define this path as under:

RURURRUURURURURURUUR

It can be seen that a similar path with m R’s and n U’s is possible, since the total possible
R-steps are m and a maximum of n steps can be taken in the U-direction from (0,0) to (m,n).
The key lies in the observation that we can construct a one-to-one correspondence between
the above mentioned scheme of encryption and the set of paths from (0,0) to (/m,n) using
only unit up or right steps.

Now, counting the possibilities in the former case is as easy as counting the number of
ways of placing m elements in m+n given spaces, which is, (C7"*"), and however simple it
may seem now, this is the solution!
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THE WINDMILL PROCESS

ABSTRACT

We have reached a phase in this world where everyone fights an identity crisis.
And people are appreciated for preserving their traditional and cultural ties.
Though abstraction has made its own niche in the realm of art, any work of art
is much appreciated and finds an even larger audience when it has a tinge of
simplicity at its core. It is more of an irony that the questions that are genuinely
tough have a cloak of intuitiveness attached to them as a disguise. In this paper,
we attempt to discuss a seemingly simple problem that was asked in the world’s
toughest math test.

2011 IMO, QUESTION 2

Let S be a finite set of at least two points in the plane. Assume that no three points of S are
collinear. A windmill is a process that starts with a line { going through a single point P € S.
The line rotates clockwise about the pivot P until the first time that the line meets some other
point belonging to S. This point, (), takes over as the new pivot, and the line now rotates clock-
wise about (), until it next meets a point of S. This process continues indefinitely. Show that
we can choose a point P in S and a line ¢ going through P such that the resulting windmill
uses each point of S as a pivot infinitely many times[1].

A RoucH SKETCH

The fact that a person of any age group or any academic background can understand the
question makes it even harder to think about a mathematical proof. We begin by attempting
to mathematize this question.

Firstly, to get a feel for what this windmill process is we begin by drawing some diagrams.
After progressively increasing the number of points in S, we observe that if the initial pivot
of the line ¢ is an outside point then the line keeps on rotating around the perimeter of the
plane and it never touches the interior points. But a second look at the question tells us that
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we have to find some starting point, not any! Then we notice that if we somehow start in
the middle of the plane, then the line actually passes through each point and the resulting
windmill uses each point of S as a pivot infinitely many times. So the question boils down
to how can we find this middle-ness?

[,

\\M\

Figure 15.1: Case of 2 points

SoruTIiON 1

Starting from the point where we left, let us math-o-fy what we have observed so far. In
a plane consisting of n points, we can say that the line ¢ is at the center, if the number of
points on either of its sides are equal. Let us give this line an orientation so that we can
distinguish its sides. To make this distinction even clearer, we call the line’s left side the
orange side and the other side is blue. It is easy to observe that whenever the pivot changes
from a point A to a point B, A acquires the side initially possessed by B. Thus, the total ele-
ments of S on either of the sides remains constant throughout the windmill process (except
for those moments when the line contains two points).
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Figure 15.2: Case of 4 points

We consider two cases, in the first case let |S| = 2n + 1 is odd. We claim that through any
pivot A € S, there is a line that has n points on each side. To verify this, pick any oriented
line through A that does not pass through any other point of S and suppose that it has n+ s
points on its orange side. If s = 0 then we have established the claim, so we may assume
that s # 0. As the line takes a half turn (180°) around A, the number of points of S on its

orange side changes by 1 whenever the line passes through a point; after 180°, the number
of points on the orange side is n — s. Therefore, there is an intermediate stage at which the
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orange side, and thus also the blue side, contains n points.

Now, select the point B arbitrarily, and choose a line through B that has n points of S
on each side to be the initial state of the windmill. We will show that during a rotation over
180°, the line of the windmill visits each point of S as a pivot. To see this, select any point
A of S and select a line ¢ through A that separates S into equal halves. The point A is the
unique point of S through which a line in this direction can separate the points of S into
equal halves (parallel translation would disturb the balance). Therefore, when the windmill
line is parallel to /, it must be ¢ itself, and so pass through A.

Next, suppose that |S| = 2n. Similarly to the odd case, for every A € S there is an oriented
line through A with n — 1 points on its orange side and n points on its blue side. Select such
an oriented line through an arbitrary B to be the initial state of the windmill. We will now
show that during a rotation over 360°, the line of the windmill visits each point of S as a
pivot. To see this, select any point A of S and an oriented line ¢ through A that separates S
into two subsets with n — 1 points on its orange and n points on its blue side. Again, paral-
lel translation would change the numbers of points on the two sides, so when the windmill
line is parallel to ¢ with the same orientation, the windmill line must pass through A. This
completes the proof. [

ConcLusions
This question definitely doesn’t test the number of theorems that students have learned

throughout their academic curriculum. This unusually pure puzzle has its charm in the in-
tuitiveness attached to it that calls for a clever perspective.
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MATHEMATICAL FACTS

UraMm SPIRAL

The Ulam Spiral or prime spiral is a plot of prime numbers, devised by mathematician Stanis-
law Ulam. It is constructed by writing all the positive integers in a spiral arrangement on a
square lattice and then by marking the primes[1].

37—36—35—34—33-32-31

38 17—-16—15—14-13 30
3|9 1|8 5—4—3 12 29
4|0 1|9 |6 1—2 11 28
4|1 2|0 l.-"—8—9—1(3 27
4|2 2|1—22—23—24—25—26
4!3—44—45—46—4?—48—49.“

37 31
17— 13
‘ =1 3 | 29
19 ‘ —|2 11
41 7
23
43 47

From the spiral, it is clearly visible that most of the primes lie on diagonal straight lines
and some on horizontal and vertical lines. Mostly, the number spiral is started with 1 at
the centre but we can also start with any number of our choice. For example, if we start
with 41 at the centre of spiral, we get a diagonal containing an unscathed string of 40 prime
numbers (which is the longest example of its kind!).

Explanation. Diagonal, vertical and horizontal lines in the spiral corresponds to the poly-
nomial of the form-

f(n)=4n* +bn +c
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where b and c are integer constants. If b is even, then the lines are diagonal, either all of odd
or all even depending on the value of c.

However, some polynomials, for example 4n® + 8n + 3 while producing all odd values,
factorize to (2n + 1)(2n + 3) and are therefore never prime other than 1. Such examples
corrosponds to those diagonal lines that are lacking prime numbers.

HA1LsToNE NUMBERS

The Collatz Conjecture is a conjecture that defines a sequence of positive integers in which
each term is obtained from the previous term as follows:

« If n is even, the next term is %

« If nis odd, the next term is 3n + 1

This conjecture was given by Lothar Collatz. It is also known as the 3n 4+ 1 Problem or
3n + 1 Conjecture. According to this Conjecture, regardless of the choice of n, eventually
the sequences converges to 1. The sequence of integers generated by this process are called
Hailstone Numbers[2].

Examples
« If n =7, we get the following sequence:
7,22,11,34,17,52, 26,13, 40, 20, 10, 5, 16, 8,4,2, 1
Thus, when n = 7, it takes 17 steps to converge to 1.

« If n = 27, we get the following sequence:
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91,
274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593,
1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911,
2734,1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650,
325,976, 488, 244, 122, 61, 184, 92, 46, 23,70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

When, n = 27, it takes 111 steps to converge to 1.

THE MosT BeEauTiFuL EQUATION

Euler’s Identity is considered to be an epitome of mathematical beauty. The equality is

eT+1=0
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This equation is often compared to a Shakespearean sonnet or a Da Vinci picture. Euler’s
Identity encompasses the 3 basic arithmetic operations i.e. addition, multiplication and ex-
ponentiation. However, the main center of attraction is the fact that it comprises of the five
most fundamental numbers in mathematics[3]:

1. e = Euler’s number, the base of natural logarithm

2. 1 = Imaginary unit (2 = —1)

3. m = Ratio of circumference of circle to its diameter

W

. 1 = Multiplicative identity

5. 0 = Additive identity

WaLLis PropucT

The Wallis product for 7 is named after English mathematician John Wallis. It is as follows-

Ty 4n? = 2 2y (4 4\ /8 8
sl =15 = (9 69 Go)
[4]
Proof. We prove the above result using Euler infinite product for sine function, which is
given by-
s1nm_1o—°[(1_ z? >
r n?m?
n=1
Letz = 7
N 511: 2 — (1 - 32)
bl el nem
™o 4n?
T oty , 4n? T, 2n 2n
= - = = :
2 7[[1(4712—1> }_[1(271—1> (2n+1>
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TuaE Four CoLOUR THEOREM

Have you ever got to colour a map for your geography project? How many colours did
you use to colour it? In 1852, Francis Guthrie was trying to colour the map of counties of
England. He noticed that the regions could be coloured using at most four colours in such a
way that no two adjacent regions had the same colour[5]. The first successful proof of this
conjecture came only in 1976, when Kenneth Appel and Wolfgang Haken proved it using
computer assistance. They argued that if the four-colour conjecture were false, then there
would be at least one map with minimum regions which needed five colours. Using two
concepts they proved that such a minimal counterexample could not exist[6].

« Every non-4-colourable map must belong to an unavoidable set of configurations.

« If a configuration does not fall under minimal counterexample then it is called re-
ducible configuration. A map can be reduced to a smaller map if it has a reducible
configuration. If this smaller map can be coloured with four colours, so could the
original one be. So, if the original map could not be coloured with four colours, the
smaller one cannot either. Therefore, the original map is not minimal.

This proof remained contentious due to its extensive usage of computer assistance, but paved
the path for its upcoming improvements.

GODEL’s INCOMPLETENESS THEOREMS

Do you think that mathematics is complete? Can all true statements be proved by a for-
mal system (for example a system of natural numbers)? In 1931, Kurt Gédel came up with
his two incompleteness theorems and showed that an axiomatic system cannot exist which
contains all mathematics. It will only get bigger and bigger as we try to complete it[8].

+ First Incompleteness Theorem: Given any consistent formal system S, it will be
incomplete, that is, there exists statements in S which are neither provable nor dis-
provable in S.

+ Second Incompleteness Theorem: Given any consistent formal system §, it is im-
possible to prove the consistency of S in S only[7].

GABRIEL’S HORN PARADOX (PAINTER’S PARADOX)

Gabriel’s Horn is the infinitesimally long surface of revolution obtained after rotating the
curve y = % (for x > 1) about the x — azis. Intuitively, when we think about its volume, it
seems infinite as its length goes on to infinity and thus if we are to fill it with paint, it will
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always be somewhat empty. But, using calculus it turns out that it has a finite volume and
infinite surface area, and thus the paradox[10].

L upto infinity

7 x-axis

Made with the help of GeoGebra

Calculating Volume: Using disc method, the volume of the horn will be
0o 1 2
V = / ™ <—> dz
1 x
=L
= T _——
Tl

= 7

Calculating Surface Area: The surface area of the horn will be:

[e%s) 2
S = / 2 (1> 1+<—i2> dz
1 T T
= / 2T (1>\/1+i4 dx
1 x x

> / 21 1 dx
1 .CL‘
— (@)}

which is infinity.

Hence, the Gabriel’s horn can be completely filled with 7 units of paint but cannot be painted
fully as it has infinite surface area.
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Relation with convergence and divergence of infinite series: The volume of Gabriel’s
horn is related to the infinite series » #, that converges resulting in finite volume.
Whereas the surface area is related to the infinite series Y- % that diverges resulting in
infinite surface area[9].

If one assumes the horn to be very thin, then the inner surface area would be same as the
outer surface area. And if the horn can be completely filled with 7 units of paint, wouldn’t
the inner surface area automatically get painted? Again, the paradox!
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